Life Prediction Techniques for Variable Amplitude Multiaxial Fatigue—Part 2: Comparison With Experimental Results

1996 ◽  
Vol 118 (3) ◽  
pp. 371-374 ◽  
Author(s):  
C. H. Wang ◽  
M. W. Brown

An extensive multiaxial random fatigue test programme was conducted at room temperature using tubular specimens. Experiments were performed under combined tension/torsion and triaxial loading, covering proportional and nonproportional variable amplitude loading cases. The two proposed life prediction methods discussed in Part 1 are evaluated using the experimental results, demonstrating that these two methods provide satisfactory predictions.

1996 ◽  
Vol 118 (3) ◽  
pp. 367-370 ◽  
Author(s):  
C. H. Wang ◽  
M. W. Brown

Fatigue life prediction under multiaxis random loading is an extremely complex and intractable topic; only a few methods have been proposed in the literature. In addition, experimental results under multiaxis random loading are also scarce. In part one of this two-part paper, a multiaxial non-proportional cycle counting method and fatigue damage calculation procedure are proposed, which is compared with one published damage-searching method. Both theories are based on critical plane concepts, one being an extension of the local strain approach for uniaxial variable amplitude loading and the other employing a new counting algorithm for multiaxis random loading. In principle, these two methods can be considered as bounding solutions for fatigue damage accumulation under multiaxis random loading.


Author(s):  
Tommy J. George ◽  
M.-H. Herman Shen ◽  
Theodore Nicholas ◽  
Charles J. Cross

A new vibration-based multiaxial fatigue testing methodology for assessing high cycle turbine engine material fatigue strength at various stress ratios is presented. The idea is to accumulate fatigue energy on a base-excited plate specimen at high frequency resonant modes and to complete a fatigue test in a much more efficient way at very low cost. The methodology consists of: (1) a topological design procedure, incorporating a finite element model, to characterize the shape of the specimens for ensuring the required stress state/pattern, (2) a vibration feedback empirical procedure for achieving the high cycle fatigue experiments with variable-amplitude loading, and finally (3) a yielding procedure for achieving various uniaxial stress ratios. The performance of the methodology is demonstrated by the experimental results from mild steel, 6061-T6 aluminum, and Ti-6Al-4V plate specimens subjected to fully reversed bending for both uniaxial and biaxial stress states. Results are compared with those produced using traditional fatigue test machines.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 116
Author(s):  
František Fojtík ◽  
Jan Papuga ◽  
Martin Fusek ◽  
Radim Halama

The paper describes results of fatigue strength estimates by selected multiaxial fatigue strength criteria in the region of high-cycle fatigue, and compares them with own experimental results obtained on hollow specimens made from ČSN 41 1523 structural steel. The specimens were loaded by various combinations of load channels comprising push–pull, torsion, bending and inner and outer pressures. The prediction methods were validated on fatigue strengths at seven different numbers of cycles spanning from 100,000 to 10,000,000 cycles. No substantial deviation of results based on the selected lifetime was observed. The PCRN method and the QCP method provide best results compared with other assessed methods. The results of the MMP criterion that allows users to evaluate the multiaxial fatigue loading quickly are also of interest because the method provides results only slightly worse than the two best performing solutions.


Author(s):  
Yanyao Jiang ◽  
Tianwen Zhao ◽  
Xiaogui Wang ◽  
Zengliang Gao

Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, at room temperature. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. A critical plane multiaxial fatigue criterion recently developed was found to correlate well with all the experiments conducted for the material. In addition, the fatigue criterion correctly predicted the cracking behavior of the material subjected to different loading paths.


Author(s):  
ZR Wu ◽  
X Li ◽  
L Fang ◽  
YD Song

Fatigue tests under multiaxial loading were conducted on Ni-based superalloy GH4169 tubular specimens. The microstructures of fracture surfaces under different loading paths were compared. Several multiaxial fatigue criteria were reviewed and evaluated with multiaxial fatigue test data. The criteria of equivalent strain, maximum shear strain and Kandil–Brown–Miller provided unsatisfactory results for GH4169. Fatemi–Socie and Wu–Hu–Song parameters showed better life prediction abilities for this material. Minor modification has been introduced in Wu–Hu–Song parameter. The material constants of modified Wu–Hu–Song criterion are only dependent on torsional fatigue tests. The satisfactory prediction results based on modified Wu–Hu–Song model were obtained for GH4169.


Sign in / Sign up

Export Citation Format

Share Document