Flow Behavior Around Stayvanes and Guidevanes of a Francis Turbine

1996 ◽  
Vol 118 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Toshiaki Suzuki ◽  
Tomotatsu Nagafuji ◽  
Hiroshi Komiya ◽  
Takako Shimada ◽  
Toshio Kobayashi ◽  
...  

The three-dimensional computation of steady and incompressible internal flows is of interest in numerical simulations of turbomachinery, and such simulations are currently under investigation, from inviscid to viscous flow analyses. First, surface pressure distributions have been measured for the stayvanes and the guidevanes of a Francis turbine. They are presented to verify the numerical results. Second, both inviscid and viscous three-dimensional flow analyses have been made, so as to predict the flow behavior in the same domain. Comparison of the measured pressure distributions to the predicted pressure distributions has been made to study the usefulness of the present simulations. It can be pointed out that a global analysis which includes a runner flow passage, except runner blades, is necessary to predict the three-dimensional flow characteristics and that inviscid flow analysis has the capability of good prediction for flow without separation. Viscous flow analysis gives similar results, though it is necessary to investigate further the improvement of prediction accuracy. Flow characteristics around the stayvanes and the guidevanes are also discussed.

1994 ◽  
Vol 116 (1) ◽  
pp. 116-120 ◽  
Author(s):  
T. C. Vu ◽  
W. Shyy

Validation of a three-dimensional computational algorithm for viscous flow analysis has been conducted for two types of Francis turbine runner geometry, one low head and one high head, using experimental measurement. Assessment has been made for both qualitative features of flow behavior, as well as quantitative distribution of blade pressure and head loss. The influence of the grid size on the accuracy of the numerical solution is also discussed. Effort has been made to address some of the design issues, and to demonstrate that the present computational algorithm can make useful contributions to help improve the current design practices.


Author(s):  
Imran Aziz ◽  
Imran Akhtar ◽  
Usama Bin Perwez ◽  
Auwais Ahmed

In this study, three dimensional flow analysis of one and a half stage axial turbine is investigated. The objective of this study is to analyse the effect of rotor stator interaction and the resulting unsteadiness. This includes the effect of first row of Nozzle guide vane (NGV) wakes on rotor blades, secondary vortical flow prediction, influence of rotor wakes on the flow pattern of second stator, appreciation and application of techniques to model the exact blade counts across the rotor-stator interfaces. We employ a three-dimensional finite-volume based solver to simulate the flow in the turbine using SST model to account for turbulence effects. Sliding mesh technique is used to allow the transfer of flow parameters across the sliding rotor/stator interfaces. In order to model a single passage configuration, profile transformation and time transformation method is used. The flow physics for the visualization and understanding of flow behavior in a 3D turbine cascade is explained in detail and validated with the previous experimental and numerical studies. The study provides application of computationally efficient methods for simulating the fluid flow in a turbine which contain unequal number of rotor and stator blades.


1986 ◽  
Vol 108 (3) ◽  
pp. 313-320 ◽  
Author(s):  
R. G. Williamson ◽  
S. H. Moustapha

This paper presents detailed information on the three-dimensional flow field in a realistic low aspect ratio, high turning nozzle vane design which incorporates end-wall contouring and which has been tested over a range of exit Mach number from subsonic up to the design value at mean section of 1.15. The experimental results, in the form of nozzle surface pressure distributions as well as surveys of pressure losses and flow angles at exit, are compared with those calculated by a three-dimensional flow analysis. The effects of exit Mach number on the measured nozzle performance are also presented.


1984 ◽  
Vol 106 (2) ◽  
pp. 511-515 ◽  
Author(s):  
E. A. Baskharone

A three-dimensional inviscid flow analysis in the combined scroll-nozzle system of a radial inflow turbine is presented. The coupling of the two turbine components leads to a geometrically complicated, multiply-connected flow domain. Nevertheless, this coupling accounts for the mutual effects of both elements on the three-dimensional flow pattern throughout the entire system. Compressibility effects are treated for an accurate prediction of the nozzle performance. Different geometrical configurations of both the scroll passage and the nozzle region are investigated for optimum performance. The results corresponding to a sample scroll-nozzle configuration are verified by experimental measurements.


1963 ◽  
Vol 16 (4) ◽  
pp. 620-632 ◽  
Author(s):  
D. J. Maull ◽  
L. F. East

The flow inside rectangular and other cavities in a wall has been investigated at low subsonic velocities using oil flow and surface static-pressure distributions. Evidence has been found of regular three-dimensional flows in cavities with large span-to-chord ratios which would normally be considered to have two-dimensional flow near their centre-lines. The dependence of the steadiness of the flow upon the cavity's span as well as its chord and depth has also been observed.


Sign in / Sign up

Export Citation Format

Share Document