Modeling the Plane Joint

1999 ◽  
Vol 121 (3) ◽  
pp. 383-386 ◽  
Author(s):  
I. S. Fischer

The plane joint, often referred to as the “E” joint is modeled using dual-number coordinate-transformation matrices. The joint consists of two flat surfaces held in contact so that three degrees of freedom are allowed, two translations and a rotation. The swash-plate mechanism is used as an example of a mechanism featuring the plane joint.

Author(s):  
Ian S. Fischer ◽  
Sahidur Rahman

Abstract Dual-number techniques are used to analyze the kinematics and dynamics of the slider crank mechanism generalized to consider the effects of the cylinder axis being offset and non-perpendicular to the crankshaft axis, conditions which result in reciprocating machinery such as engines and compressors from manufacturing tolerances. The kinematics of the mechanism are evaluated with a Newton-Raphson method using dual-number coordinate-transformation matrices which in this work is extended to include mechanisms with spherical joints. Results for various cases are shown and are ready to be used in a study of the dynamics of the generalized slider-crank.


Author(s):  
Ian S. Fischer

Abstract An aspect of dual-number coordinate-transformation matrices is used to establish iterative methods for determining the rotational and translational displacements in the kinematic analysis of complex spatial mechanisms.


Author(s):  
I S Fischer

A methodology designed for practical computer coding is developed to implement the velocity analysis of mechanisms with a plane joint, that is, a joint consisting of two flat surfaces held in contact to permit one rotational and two translational degrees of freedom. The analysis utilizes the 3 × 3 dual-number coordinate transformation modelling of joints and links of a mechanism to develop the results in a compact form amenable to object-oriented programming of displacement and velocity calculations. The velocity analysis of the Tracta coupling, an RRERR mechanism (rotation-rotation-plane-rotation-rotation joints) that has been used as a constant-velocity shaft coupling, is given as an example for a mechanism with a plane joint. An explanation is given of the relationship between the calculated speeds and the physical speeds in a plane joint.


2018 ◽  
Vol 51 (13) ◽  
pp. 372-377 ◽  
Author(s):  
Juan E. Andrade García ◽  
Alejandra Ferreira de Loza ◽  
Luis T. Aguilar ◽  
Ramón I. Verdés

Author(s):  
A. H. S. Iyer ◽  
M. H. Colliander

Abstract Background The trend in miniaturisation of structural components and continuous development of more advanced crystal plasticity models point towards the need for understanding cyclic properties of engineering materials at the microscale. Though the technology of focused ion beam milling enables the preparation of micron-sized samples for mechanical testing using nanoindenters, much of the focus has been on monotonic testing since the limited 1D motion of nanoindenters imposes restrictions on both sample preparation and cyclic testing. Objective/Methods In this work, we present an approach for cyclic microcantilever bending using a micromanipulator setup having three degrees of freedom, thereby offering more flexibility. Results The method has been demonstrated and validated by cyclic bending of Alloy 718plus microcantilevers prepared on a bulk specimen. The experiments reveal that this method is reliable and produces results that are comparable to a nanoindenter setup. Conclusions Due to the flexibility of the method, it offers straightforward testing of cantilevers manufactured at arbitrary position on bulk samples with fully reversed plastic deformation. Specific microstructural features, e.g., selected orientations, grain boundaries, phase boundaries etc., can therefore be easily targeted.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xiaohui Liu ◽  
Ming Zou ◽  
Chuan Wu ◽  
Mengqi Cai ◽  
Guangyun Min ◽  
...  

A new quad bundle conductor galloping model considering wake effect is proposed to solve the problem of different aerodynamic coefficients of each subconductor of iced quad bundle conductor. Based on the quasistatic theory, a new 3-DOF (three degrees of freedom) galloping model of iced quad bundle conductors is established, which can accurately reflect the energy transfer and galloping of quad bundle conductor in three directions. After a series of formula derivations, the conductor stability judgment formula is obtained. In the wind tunnel test, according to the actual engineering situation, different variables are set up to accurately simulate the galloping of iced quad bundle conductor under the wind, and the aerodynamic coefficient is obtained. Finally, according to the stability judgment formula of this paper, calculate the critical wind speed of conductor galloping through programming. The dates of wind tunnel test and calculation in this paper can be used in the antigalloping design of transmission lines.


Sign in / Sign up

Export Citation Format

Share Document