A CFD Investigation Into the Effects of Current Incidence on the Hydrodynamic Loading on a Deepwater TLP

1999 ◽  
Vol 121 (2) ◽  
pp. 109-115 ◽  
Author(s):  
P. Teigen ◽  
V. P. Przulj ◽  
B. A. Younis

The use in the offshore engineering industry of computational fluid dynamics (CFD) to estimate the hydrodynamic forces due to steady, turbulent currents on offshore structures has so far been rather limited. This is largely due to the uncertainties inherent in obtaining accurate solutions to the governing Navier-Stokes equations, particularly for complex geometries and at high Reynolds numbers. In this study, we assess the contributions to such uncertainties arising from a number of factors. Those include the number of nodes in the computational mesh used to overlay the flow domain, the choice of scheme used to discretize the governing equations, the choice of turbulence model used to close the time-averaged equations, and the assumptions made regarding the state of turbulence in the incident current. The influence of these factors is systematically assessed with respect to the flow around a full-scale mini-TLP. The paper also assesses the influence of the current incidence on the hydrodynamic loads on the same TLP. A previous study by the same authors has suggested the presence of substantial “shielding,” whereby the computed steady-state loading on the TLP was found to be significantly lower than the value recommended by the DNV design code. Computations performed here with the direction of the incident current varied in the range 0–45 deg suggest that the extent of this shielding is significantly diminished at high angles of incidence.

2021 ◽  
Vol 61 (SI) ◽  
pp. 155-162
Author(s):  
Petr Sváček

This paper is interested in the mathematical modelling of the voice production process. The main attention is on the possible closure of the glottis, which is included in the model with the concept of a fictitious porous media and using the Hertz impact force The time dependent computational domain is treated with the aid of the Arbitrary Lagrangian-Eulerian method and the fluid motion is described by the incompressible Navier-Stokes equations coupled to structural dynamics. In order to overcome the instability caused by the dominating convection due to high Reynolds numbers, stabilization procedures are applied and numerically analyzed for a simplified problem. The possible distortion of the computational mesh is considered. Numerical results are shown.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


Author(s):  
Carl E. Rathmann

For well over 150 years now, theoreticians and practitioners have been developing and teaching students easily visualized models of fluid behavior that distinguish between the laminar and turbulent fluid regimes. Because of an emphasis on applications, perhaps insufficient attention has been paid to actually understanding the mechanisms by which fluids transition between these regimes. Summarized in this paper is the product of four decades of research into the sources of these mechanisms, at least one of which is a direct consequence of the non-linear terms of the Navier-Stokes equation. A scheme utilizing chaotic dynamic effects that become dominant only for sufficiently high Reynolds numbers is explored. This paper is designed to be of interest to faculty in the engineering, chemistry, physics, biology and mathematics disciplines as well as to practitioners in these and related applications.


1994 ◽  
Vol 116 (4) ◽  
pp. 202-208 ◽  
Author(s):  
K. Nakajima ◽  
Y. Kallinderis ◽  
I. Sibetheros ◽  
R. W. Miksad ◽  
K. Lambrakos

A numerical study of the nonlinear and random behavior of flow-induced forces on offshore structures and experimental verification of the results are presented. The numerical study is based on a finite-element method for the unsteady incompressible Navier-Stokes equations in two dimensions. The momentum equations combined with a pressure correction equation are solved employing fourth-order artificial dissipation with a nonstaggered grid, instead of the more commonly used staggered meshes. The solution is advanced in time with a combined explicit and implicit marching scheme. Emphasis is placed on study of reversing flows around a cylinder. Comparisons with experimental data evaluate accuracy and robustness of the method.


2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


2017 ◽  
Vol 817 ◽  
Author(s):  
B. J. McKeon

Known structures and self-sustaining mechanisms of wall turbulence are reviewed and explored in the context of the scale interactions implied by the nonlinear advective term in the Navier–Stokes equations. The viewpoint is shaped by the systems approach provided by the resolvent framework for wall turbulence proposed by McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in which the nonlinearity is interpreted as providing the forcing to the linear Navier–Stokes operator (the resolvent). Elements of the structure of wall turbulence that can be uncovered as the treatment of the nonlinearity ranges from data-informed approximation to analysis of exact solutions of the Navier–Stokes equations (so-called exact coherent states) are discussed. The article concludes with an outline of the feasibility of extending this kind of approach to high-Reynolds-number wall turbulence in canonical flows and beyond.


Sign in / Sign up

Export Citation Format

Share Document