Elastic-Plastic Analysis of Stresses and Initiation of Cracks in a Ceramic Coating Under Indentation by an Elastic Sphere

1998 ◽  
Vol 120 (3) ◽  
pp. 463-469 ◽  
Author(s):  
K. Hayashi ◽  
F. Yuan

The elastic-plastic contact problem of a ceramic coating on a half-space indented by an elastic sphere is solved by the use of the finite element method under a variety of conditions. An elastic-plastic material behavior with isotropic strain hardening was employed. Results for stresses, during loading and after unloading, on the surface and along the axis of symmetry are presented and formation of cracks is discussed in detail, emphasizing the influence of the thickness of coating. It is shown that the circumferential stress on the surface of the coating is highly tensile so that radial cracks are induced for a sharp indenter. But, for a blunt indenter, the radial stress is tensile and is always larger than the circumferential stress, leading to the formation of circumferential cracks. It is also shown that, in the case of a sharp indenter, radial cracks can be induced during unloading.

Author(s):  
J. M. Stephan ◽  
C. Gourdin ◽  
J. Angles ◽  
S. Quilici ◽  
L. Jeanfaivre

The distribution of unsteady temperatures in the wall of the 6" FATHER mixing tee mock-up is calculated for a loading configuration: The results seem realistic even if they are not still very accurate (see paper PVP2005-71592 [11]). On this basis, thermal stresses are evaluated for elastic and elastic-plastic material behavior. Then, different types of fatigue criteria are used to evaluate the fatigue damage. The paper develops a brief description of the criteria, the corresponding fatigue damage evaluation and attempts to explain the differences.


1977 ◽  
Vol 99 (1) ◽  
pp. 39-53 ◽  
Author(s):  
D. Bushnell ◽  
G. D. Galletly

Several aluminum and mild steel torispherical heads were tested by Galletly and by Kirk and Gill and subsequently analyzed by Bushnell with use of the BOSOR5 computer program. The thinnest specimens buckled at pressures for which part of the toroidal knuckle was stressed well beyond the yield point. The analysis includes large deflection effects, nonlinear material behavior, and meridional variation of the thickness. The calculated strains in the thicker specimens agree reasonably well with the test results, but the calculated prebuckling strains in the thinnest specimens are generally greater than the values measured in the torodial knuckle after the onset of plastic flow. Reasonably good agreement between test and theory is obtained for the buckling pressures of aluminum specimens, but the calculated buckling pressures for mild steel specimens are much lower than the observed values, a discrepancy that is attributed to circumferentially varying thickness and possible inability of the analytical model of the elastic-plastic material to predict accurately the state of stress in the toroidal knuckle where loading is nonproportional once yielding has occurred.


2007 ◽  
Vol 129 (2) ◽  
pp. 292-304 ◽  
Author(s):  
V. Sabelkin ◽  
S. Mall

The contact interaction between a rough cylindrical body (i.e., with asperities) and a deformable smooth flat was investigated using the finite-element analysis. Analysis included both elastic–plastic deformation and friction. Further, the effects of several parameters of rough surface on the evolution of the contact area with increasing contact load were investigated. These were radius, number, constraint, and placement of asperities. Contact area of rough surface is smaller than its counterpart of smooth surface, and this decrease depends on number, radius, constraint, and placement of asperities. The elastic material behavior results in considerably smaller contact area than that from elastic–plastic material behavior. The evolution of contact area with increasing contact load is of the complex nature with elastic–plastic material deformation since the yielded region widens and/or deepens with increasing load depending on number, radius, and constraint of asperities. The effect of constraint on the asperity depends upon its nature (i.e., from either sides or one side) and radius of the asperity. The effects of these several parameters on the contact area versus applied load relationships are expressed in the graphical form as well as in terms of equations wherever possible.


PAMM ◽  
2003 ◽  
Vol 3 (1) ◽  
pp. 270-271
Author(s):  
Steffen Ecker ◽  
Herbert Baaser ◽  
Dietmar Gross

Sign in / Sign up

Export Citation Format

Share Document