Film Cooling From a Single Row of Holes Oriented in Spanwise/Normal Planes

1997 ◽  
Vol 119 (4) ◽  
pp. 770-776 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes inclined at 30 deg from the test surface in spanwise/normal planes. With this configuration, holes are spaced 6d apart in the spanwise direction in a single row. Results are presented for a ratio of injectant density to free-stream density near 1.0, and injection blowing ratios from 0.5 to 1.5. Compared to results measured downstream of simple angle (streamwise) oriented holes, spanwise-averaged adiabatic effectiveness values are significantly higher for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m when m = 1.0 and 1.5 for x/d < 80. The injectant from the spanwise/normal holes is also less likely to lift off of the test surface than injectant from simple angle holes. This is because lateral components of momentum keep higher concentrations of injectant in closer proximity to the surface. As a result, local adiabatic effectiveness values show significantly greater spanwise variations and higher local maxima at locations immediately downstream of the holes. Spanwise-averaged iso-energetic Stanton number ratios range between 1.07 and 1.26, which are significantly higher than values measured downstream of two other injection configurations (one of which is simple angle, streamwise holes) when compared at the same x/d and blowing ratio.

Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


1996 ◽  
Vol 2 (4) ◽  
pp. 259-267 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Joon Sik Lee

Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.


1997 ◽  
Vol 119 (3) ◽  
pp. 562-567 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 deg. with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d < 25–70(depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Spanwise-averaged iso-energetic Stanton number ratios range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


1996 ◽  
Vol 2 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Joon Sik Lee

Experimental results are presented which describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations at high blowing ratios. These film cooling configurations are important because they are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 3d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 0.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes which becomes more pronounced as blowing ratio increases.


1994 ◽  
Vol 116 (2) ◽  
pp. 341-352 ◽  
Author(s):  
P. M. Ligrani ◽  
J. M. Wigle ◽  
S. Ciriello ◽  
S. M. Jackson

Experimental results are presented that describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations. With this configuration, holes are spaced 3d apart in the spanwise direction, inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and inclined at 30 deg with respect to the test surface when projected into the spanwise/normal plane. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.50. Comparisons are made with measurements from two other configurations to determine: (1) the effects of hole angle orientation for constant spanwise hole spacing, and (2) the effects of spanwise hole spacing when the hole angle orientation is maintained constant. Results from the first comparison show that the compound angle injection configuration provides significantly improved film-cooling protection compared to a simple angle configuration for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m, for x/d<60. At x/d>60, spanwise-averaged adiabatic effectiveness data downstream of the two configurations generally cover about the same range. Results from the second comparison show that spanwise-averaged effectiveness values are 25 to 40 percent higher when 3d spanwise hole spacing is employed compared to 3.9d spanwise hole spacing for the same m and x/d, for x/d<40. At x/d>40, differences between the two configurations range from 12 to 30 percent. Results from all configurations studied show that spanwise-averaged iso-energetic Stanton number ratios cover approximately the same range of values and show roughly the same trends, ranging between 1.0 and 1.25. In particular, Stf/St0 values increase with m at each x/d, and show little variation with x/d for each value of m tested.


1994 ◽  
Vol 116 (2) ◽  
pp. 353-362 ◽  
Author(s):  
P. M. Ligrani ◽  
J. M. Wigle ◽  
S. W. Jackson

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes with compound angle orientations. With this configuration, holes are spaced 6d apart in the spanwise direction, inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and inclined at 30 deg with respect to the test surface when projected into the spanwise/normal plane. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.50. Comparisons are made with measurements from two other configurations to determine: (1) the effects of hole angle orientation for constant spanwise hole spacing, and (2) the effects of spanwise hole spacing when the hole angle orientation is maintained constant. Results from the first comparison show that the compound angle injection configuration provides significantly improved film-cooling protection compared to a simple angle configuration for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m, for x/d<30 when m=0.50 and for x/d<60 when m=1.0 and 1.5. At x/d>60, spanwise-averaged adiabatic effectiveness data downstream of the two configurations generally cover about the same range. Results from the second comparison show that spanwise-averaged effectiveness values are 20 to 39 percent higher when 6d spanwise hole spacing is employed compared to 7.8d spanwise hole spacing for the same m and x/d, for x/d<60. When plotted in η/m versus Xl/s coordinates, spanwise-averaged film effectiveness data measured downstream of one and two rows of holes from all injection configurations tested show a reasonable collapse. For m values between 1 and 3, spanwise-averaged iso-energetic Stanton number ratios measured just downstream of one row of holes are lower than results measured just downstream of two rows of holes, which evidences greater mixing and higher turbulence levels when the injectant emerges from two rows of holes.


1992 ◽  
Vol 114 (4) ◽  
pp. 687-700 ◽  
Author(s):  
P. M. Ligrani ◽  
S. Ciriello ◽  
D. T. Bishop

Experimental results are presented that describe the development and structure of flow downstream of one row and downstream of two staggered rows of film-cooling holes with compound angle orientations. With the compound angle configuration, holes are inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and 30 deg with respect to the test surface when projected into the spanwise/normal plane. Within each row, holes are spaced 7.8 hole diameters apart, which gives 3.9d spacing between adjacent holes for the staggered row arrangement. Results presented include disributions of iso-energetic Stanton numbers, and adiabatic film cooling effectiveness deduced from Stanton numbers using superpositiion. Also presented are plots showing the streamwise development of injectant distributions and streamwise development of mean velocity distributions. Spanwise-averaged values of the adiabatic film cooling effectivenss, η, measured downstream of two staggered rows of holes are highest with a blowing ratio m of 0.5, and decrease with blowing ratio because of injection lift-off effects for x/d < 20. However, as the boundary layers convect farther downstream, η values for m = 0.5 are lower than values for m = 1.0, 1.5, and 1.74 since smaller amounts of injectant are spread along the test surface. These differences also result because injectant from the upstream row of holes eventually merges and coalesces with the injectant from the downstream row of holes (of the two staggered rows) at the higher m. With one row of holes, local effectivenss variations are spanwise periodic, where higher values correspond to locations where injectant is plentiful near the test surface. Local Stf/Sto data also show spanwise periodicity, with local Stf/So maxima corresponding to regions of higher mixing between streamwise velocity deficits. Spanwise-averaged iso-energetic Stanton number ratios downstream of both the one-row and two-row arrangements generally range between 1.0 and 1.25, and show little variation with x/d for each value of m tested. However, for each x/d Stf/StoValues increase with m. Additional discussion of these results is presented along with comparisons to ones obtained downstream of film cooling holes with simple angles in which holes are inclined at 35 deg with respect to the test surface in the streamwise/normal plane.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


Sign in / Sign up

Export Citation Format

Share Document