scholarly journals Film Cooling From Spanwise Oriented Holes in Two Staggered Rows

Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.

1997 ◽  
Vol 119 (3) ◽  
pp. 562-567 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 deg. with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d < 25–70(depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Spanwise-averaged iso-energetic Stanton number ratios range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


1997 ◽  
Vol 119 (4) ◽  
pp. 770-776 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes inclined at 30 deg from the test surface in spanwise/normal planes. With this configuration, holes are spaced 6d apart in the spanwise direction in a single row. Results are presented for a ratio of injectant density to free-stream density near 1.0, and injection blowing ratios from 0.5 to 1.5. Compared to results measured downstream of simple angle (streamwise) oriented holes, spanwise-averaged adiabatic effectiveness values are significantly higher for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m when m = 1.0 and 1.5 for x/d < 80. The injectant from the spanwise/normal holes is also less likely to lift off of the test surface than injectant from simple angle holes. This is because lateral components of momentum keep higher concentrations of injectant in closer proximity to the surface. As a result, local adiabatic effectiveness values show significantly greater spanwise variations and higher local maxima at locations immediately downstream of the holes. Spanwise-averaged iso-energetic Stanton number ratios range between 1.07 and 1.26, which are significantly higher than values measured downstream of two other injection configurations (one of which is simple angle, streamwise holes) when compared at the same x/d and blowing ratio.


Author(s):  
Lingyu Zeng ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Most experiments of blade film cooling are conducted with density ratio lower than that of turbine conditions. In order to accurately model the performance of film cooling under a high density ratio, choosing an appropriate coolant to mainstream scaling parameter is necessary. The effect of density ratio on film cooling effectiveness on the surface of a gas turbine twisted blade is investigated from a numerical point of view. One row of film holes are arranged in the pressure side and two rows in the suction side. All the film holes are cylindrical holes with a pitch to diameter ratio P/d = 8.4. The inclined angle is 30°on the pressure side and 34° on the suction side. The steady solutions are obtained by solving Reynolds-Averaged-Navier-Stokes equations with a finite volume method. The SST turbulence model coupled with γ-θ transition model is applied for the present simulations. A film cooling experiment of a turbine vane was done to validate the turbulence model. Four different density ratios (DR) from 0.97 to 2.5 are studied. To independently vary the blowing ratio (M), momentum flux ratio (I) and velocity ratio (VR) of the coolant to the mainstream, seven conditions (M varying from 0.25 to 1.6 on the pressure side and from 0.25 to 1.4 on the suction side) are simulated for each density ratio. The results indicate that the adiabatic effectiveness increases with the increase of density ratio for a certain blowing ratio or a certain momentum flux ratio. Both on the pressure side and suction side, none of the three parameters listed above can serve as a scaling parameter independent of density ratio in the full range. The velocity ratio provides a relative better collapse of the adiabatic effectiveness than M and I for larger VRs. A new parameter describing the performance of film cooling is introduced. The new parameter is found to be scaled with VR for nearly the whole range.


1994 ◽  
Vol 116 (2) ◽  
pp. 341-352 ◽  
Author(s):  
P. M. Ligrani ◽  
J. M. Wigle ◽  
S. Ciriello ◽  
S. M. Jackson

Experimental results are presented that describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations. With this configuration, holes are spaced 3d apart in the spanwise direction, inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and inclined at 30 deg with respect to the test surface when projected into the spanwise/normal plane. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.50. Comparisons are made with measurements from two other configurations to determine: (1) the effects of hole angle orientation for constant spanwise hole spacing, and (2) the effects of spanwise hole spacing when the hole angle orientation is maintained constant. Results from the first comparison show that the compound angle injection configuration provides significantly improved film-cooling protection compared to a simple angle configuration for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m, for x/d<60. At x/d>60, spanwise-averaged adiabatic effectiveness data downstream of the two configurations generally cover about the same range. Results from the second comparison show that spanwise-averaged effectiveness values are 25 to 40 percent higher when 3d spanwise hole spacing is employed compared to 3.9d spanwise hole spacing for the same m and x/d, for x/d<40. At x/d>40, differences between the two configurations range from 12 to 30 percent. Results from all configurations studied show that spanwise-averaged iso-energetic Stanton number ratios cover approximately the same range of values and show roughly the same trends, ranging between 1.0 and 1.25. In particular, Stf/St0 values increase with m at each x/d, and show little variation with x/d for each value of m tested.


1996 ◽  
Vol 2 (4) ◽  
pp. 259-267 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Joon Sik Lee

Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Greg Natsui ◽  
Zachary Little ◽  
Jayanta S. Kapat ◽  
Jason E. Dees

Adiabatic film cooling effectiveness measurements are obtained using pressure-sensitive paint (PSP) on a flat film cooled surface. The effects of blowing ratio and hole spacing are investigated for four multirow arrays comprised of eight rows containing 52 holes of 3.8 mm diameter with 20 deg inclination angles and hole length-to-diameter ratio of 11.2. The four arrays investigated have two different hole-to-hole spacings composed of cylindrical and diffuser holes. For the first case, lateral and streamwise pitches are 7.5 times the diameter. For the second case, pitch-to-diameter ratio is 14 in lateral direction and 10 in the streamwise direction. The holes are in a staggered arrangement. Adiabatic effectiveness measurements are taken for a blowing ratio range of 0.3–1.2 and a density ratio of 1.5, with CO2 injected as the coolant. A thorough boundary layer analysis is presented, and data were taken using hotwire anemometry with air injection, with boundary layer, and turbulence measurements taken at multiple locations in order to characterize the boundary layer. Local effectiveness, laterally averaged effectiveness, boundary layer thickness, momentum thickness, turbulence intensity, and turbulence length scale are presented. For the cylindrical holes, at the first row of injection, the film jets are still attached at a blowing ratio of 0.3. By a blowing ratio of 0.5, the jet is observed to lift off, and then impinge back onto the test surface. At a blowing ratio of 1.2, the jets lift off, but reattach much further downstream, spreading the coolant further along the test surface. A thorough uncertainty analysis has been conducted in order to fully understand the presented measurements and any shortcomings of the measurement technique. The maximum uncertainty of effectiveness and blowing ratio is 0.02 counts of effectiveness and 3%, respectively.


1996 ◽  
Vol 2 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Joon Sik Lee

Experimental results are presented which describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations at high blowing ratios. These film cooling configurations are important because they are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 3d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 0.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes which becomes more pronounced as blowing ratio increases.


Author(s):  
Joshua B. Anderson ◽  
Emily J. Boyd ◽  
David G. Bogard

The performance of film cooling designs is typically quantified by the adiabatic effectiveness, with results presented in terms of non-dimensional parameters such as the blowing ratio, momentum flux ratio, or velocity ratio of the coolant to the overflowing mainstream gas. In order to appropriately model experimental film cooling designs, the correct coolant flow parameter should be selected. In this work, a single row of axial round holes and shaped holes were placed in a flat plate and tested within a recirculating wind tunnel at low speeds and temperatures. Mainstream turbulence intensity and boundary layer thickness were set similar to expected engine conditions. The density ratio of the coolant was varied from 1.2 to 1.6 in order to independently vary the parameters listed above, which were tested at six different conditions for each density ratio. High-resolution IR thermography was used to measure adiabatic effectiveness downstream of the single row of cooling holes. The results indicate that adiabatic effectiveness performance of cylindrical and shaped holes are scaled most effectively using velocity ratio, providing much more accurate results then when the blowing ratio is used.


Author(s):  
Greg Natsui ◽  
Zachary Little ◽  
Jay Kapat ◽  
Anthony Socotch ◽  
Anquan Wang ◽  
...  

Adiabatic film cooling effectiveness measurements are obtained using pressure-sensitive paint (PSP) on a flat film cooled surface. The effects of blowing ratio and hole spacing are investigated for four multi-row arrays comprised of 8 rows containing 52 holes of 3.8 mm diameter with 20° inclination angles and hole length-to-diameter ratio of 11.2. The four arrays investigated have two different hole-to-hole spacings composed of cylindrical and diffuser holes. For the first case, lateral and streamwise pitches are 7.5 times the diameter. For the second case, pitch-to-diameter ratio is 14 in lateral direction and 10 in the streamwise direction. The holes are in a staggered arrangement. Adiabatic effectiveness measurements are taken for a blowing ratio range of 0.3 to 1.2 and a density ratio of 1.5, with CO2 injected as the coolant. A thorough boundary layer analysis is presented, and data was taken using hotwire anemometry with air injection, with boundary layer and turbulence measurements taken at multiple locations in order to characterize the boundary layer. Local effectiveness, laterally averaged effectiveness, boundary layer thickness, momentum thickness, turbulence intensity and turbulence length scale are presented. For the cylindrical holes, at the first row of injection, the film jets are still attached at a blowing ratio of 0.3. By a blowing ratio of 0.5, the jet is observed to lift off, and then impinge back onto the test surface. At a blowing ratio of 1.2, the jets lift off, but reattach much further downstream, spreading the coolant further along the test surface. A thorough uncertainty analysis has been conducted in order to fully understand the presented measurements and any shortcomings of the measurement technique. The maximum uncertainty of effectiveness and blowing ratio is 0.02 counts of effectiveness and 3 percent respectively.


Author(s):  
James E. Mayhew ◽  
James W. Baughn ◽  
Aaron R. Byerley

The film-cooling performance of a flat plate in the presence of low and high freestream turbulence is investigated using liquid crystal thermography. High-resolution distributions of the adiabatic effectiveness are determined over the film-cooled surface of the flat plate using the hue method and image processing. Three blowing rates are investigated for a model with three straight holes spaced three diameters apart, with density ratio near unity. High freestream turbulence is shown to increase the area-averaged effectiveness at high blowing rates, but decrease it at low blowing rates. At low blowing ratio, freestream turbulence clearly reduces the coverage area of the cooling air due to increased mixing with the main flow. However, at high blowing ratio, when much of the jet has lifted off in the low turbulence case, high freestream turbulence turns its increased mixing into an asset, entraining some of the coolant that penetrates into the main flow and mixing it with the air near the surface.


Sign in / Sign up

Export Citation Format

Share Document