scholarly journals Experimental Study Of Short Hole Film-Cooling

Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.

2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Author(s):  
Siavash Khajehhasani ◽  
Bassam A. Jubran

The film cooling performance using novel sister shaped single-hole (SSSH) schemes are numerically investigated in the present study. The downstream, upstream and up/downstream SSSH configurations are formed by merging the discrete sister holes to the primary injection hole through a series of specific orientations. The obtained results are compared with a conventional cylindrical hole and a forward diffused shaped hole. The RANS simulations are performed using the realizable k-ε model with the standard wall function. Results are presented for low and high blowing ratios of 0.25 and 1.5, respectively. The film cooling effectiveness is notably increased for the novel shaped holes, particularly at the high blowing ratio of 1.5. Furthermore, a considerable decrease in the jet lift-off has been achieved for the proposed film hole geometries, wherein fully attached flow to the wall surface is observed for the upstream and up/downstream SSSH schemes.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


Author(s):  
Seung Il Baek ◽  
Savas Yavuzkurt

The objective of this study is to understand the effects of flow oscillations in the mainstream and film cooling jets on film cooling at various blowing ratios (0.5, 0.78, 1.0 and 1.5). These oscillations could be caused by the combustion instabilities. They are approximated in sinusoidal form for the current study. The effects of different frequencies (0, 2, 16, 32 Hz) on film cooling are investigated. Simulations are performed using URANS Realizable k-epsilon and LES Smagorinsky-Lilly turbulence models. The results indicate that if the frequencies of the mainstream and the jet flow are increased at a low average blowing ratio of M = 0.5, the adiabatic film cooling effectiveness is decreased and the heat transfer coefficient is increased due to increased disturbance in jet and main flow interaction with increasing frequency. It was observed that when the frequency of the mainstream and the cooling jet flow is increased at M = 0.5, the amplitude of the pressure difference between the mainstream and the plenum is increased resulting in increased amplitude of coolant flow rate oscillations leading to more jet lift off and more disturbance in the main flow and coolant interaction. Consequently, adiabatic film cooling effectiveness is decreased and heat transfer coefficient is increased. If the frequency of the mainstream is increased from 0 Hz to 2, 16, or 32 Hz at M = 0.5, the centerline effectiveness is decreased about 10%, 12%, or 47% and the spanwise-averaged Stanton number ratio is increased about 4%, 5%, or 9% respectively. If the frequencies of the main flow and the jet flow are increased at higher blowing ratios of M = 1.0 and 1.5, adiabatic effectiveness is increased and the spanwise-averaged heat transfer coefficient are decreased. Under steady flow conditions jet lift off is generated for these high blowing ratios. If the frequency of the mainstream and the jet flow is increased, the amplitude of coolant jet flow rate oscillation is increased for the same reason as mentioned above for M = 0.5. This leads to less jet lift off during the cycle resulting in more frequent coolant contact with the wall and consequently increased centerline effectiveness as frequency increases. In addition, the entrainment of hot gases underneath the jet doesn’t lead to higher mixing between the hot mainstream and the coolant and this results in decreased heat transfer coefficient. This is also indicated by the turbulent kinetic energy levels. Some representative results are: when the frequency of the main flow is increased from 0 Hz to 2, 16, or 32 Hz at M = 1.0, the centerline effectiveness is increased about 8%, 19%, or 320%. Also, if the oscillation frequency is increased from 2 Hz to 16, or 32 Hz at M = 1.0, the spanwise-averaged Stanton number ratio is decreased around 2%, to 5% respectively. It seems like the cut off point for low and high blowing ratio behavior of cooling jets is around M = 0.78.


1980 ◽  
Vol 102 (2) ◽  
pp. 498-503 ◽  
Author(s):  
G. Bergeles ◽  
A. D. Gosman ◽  
B. E. Launder

Double-row discrete-hole cooling arrangements offer several advantages over single-row systems yet the detailed cooling mechanism is less completely understood than for the single-row. This is partly because there have been fewer studies of this geometry and partly because the flow structure is more complex. The present paper presents detailed flow-field and concentration measurements around the injection holes for double-row injection on a flat plate at 30 deg to the mainstream. The experiments span values of the blowing injection mass velocities from 0.25 to 1.0 times the free stream mass velocity and for two boundary layer thicknesses just upstream of the injection. In contrast to single-row injection the cooling effectiveness rise monotonically with M over the range studied. Computer simulation of these flows and similar experiments of [7] has been made using a three-dimensional finite-difference code that embodies a semi-elliptic treatment of the flow field in the neighborhood of the injection holes in conjunction with a two-equation turbulence model with non-isotropic effective transport coefficients. It emerged from the calculations, that, for injection velocities up to 50 percent of the free stream value, levels of film-cooling effectiveness are extremely well predicted beyond about 10 diameters behind the leading row of holes. Around the holes themselves, however, there are certain discrepancies which become more serious as the injection level is raised.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guohua Zhang ◽  
Gongnan Xie ◽  
Bengt Ake Sunden

Purpose In this study, numerical simulations are performed to compare the adiabatic film cooling effectiveness and reveal the difference of film cooling mechanisms of two models with the same geometries and cross-section areas of film holes’ exits at three typical blowing ratios (M = 0.5, 1 and 1.5). The two models are an elliptical model and a cylindrical model with 90° compound angle, respectively. Design/methodology/approach Three different cases are considered in this work and the baseline is the model with a cylindrical film hole. The same boundary conditions and a validated turbulence model (realizable k-ε) are adopted for all cases. Findings The results show that both the elliptical and cylindrical models with 90° compound angle can enhance the film cooling effectiveness compared with the baseline. However, the elliptical model performs well at lower blowing ratios and in the near region at each blowing ratio because of the wider width of the film hole’s exit. The cylindrical model with 90° compound angle provides better film cooling effectiveness in the further downstream area of the film hole at higher blowing ratio because of the less lift-off and better coolant coverage in the larger x/D region along the mainstream direction. Originality/value Overall, it can be concluded that although the elliptical and cylindrical models with 90° compound angle have identical hole exits, the different inlet direction and cross-sectional geometry affect the flow structures when the coolant enters, moves through and exits the hole and finally different film cooling results appear.


Sign in / Sign up

Export Citation Format

Share Document