Film Cooling From Spanwise-Oriented Holes in Two Staggered Rows

1997 ◽  
Vol 119 (3) ◽  
pp. 562-567 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 deg. with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d < 25–70(depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Spanwise-averaged iso-energetic Stanton number ratios range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.

Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


1997 ◽  
Vol 119 (4) ◽  
pp. 770-776 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes inclined at 30 deg from the test surface in spanwise/normal planes. With this configuration, holes are spaced 6d apart in the spanwise direction in a single row. Results are presented for a ratio of injectant density to free-stream density near 1.0, and injection blowing ratios from 0.5 to 1.5. Compared to results measured downstream of simple angle (streamwise) oriented holes, spanwise-averaged adiabatic effectiveness values are significantly higher for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m when m = 1.0 and 1.5 for x/d < 80. The injectant from the spanwise/normal holes is also less likely to lift off of the test surface than injectant from simple angle holes. This is because lateral components of momentum keep higher concentrations of injectant in closer proximity to the surface. As a result, local adiabatic effectiveness values show significantly greater spanwise variations and higher local maxima at locations immediately downstream of the holes. Spanwise-averaged iso-energetic Stanton number ratios range between 1.07 and 1.26, which are significantly higher than values measured downstream of two other injection configurations (one of which is simple angle, streamwise holes) when compared at the same x/d and blowing ratio.


1994 ◽  
Vol 116 (2) ◽  
pp. 341-352 ◽  
Author(s):  
P. M. Ligrani ◽  
J. M. Wigle ◽  
S. Ciriello ◽  
S. M. Jackson

Experimental results are presented that describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations. With this configuration, holes are spaced 3d apart in the spanwise direction, inclined at 35 deg with respect to the test surface when projected into the streamwise/normal plane, and inclined at 30 deg with respect to the test surface when projected into the spanwise/normal plane. Results are presented for an injectant to free-stream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.50. Comparisons are made with measurements from two other configurations to determine: (1) the effects of hole angle orientation for constant spanwise hole spacing, and (2) the effects of spanwise hole spacing when the hole angle orientation is maintained constant. Results from the first comparison show that the compound angle injection configuration provides significantly improved film-cooling protection compared to a simple angle configuration for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m, for x/d<60. At x/d>60, spanwise-averaged adiabatic effectiveness data downstream of the two configurations generally cover about the same range. Results from the second comparison show that spanwise-averaged effectiveness values are 25 to 40 percent higher when 3d spanwise hole spacing is employed compared to 3.9d spanwise hole spacing for the same m and x/d, for x/d<40. At x/d>40, differences between the two configurations range from 12 to 30 percent. Results from all configurations studied show that spanwise-averaged iso-energetic Stanton number ratios cover approximately the same range of values and show roughly the same trends, ranging between 1.0 and 1.25. In particular, Stf/St0 values increase with m at each x/d, and show little variation with x/d for each value of m tested.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full-coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio (BR) along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20 deg or 30 deg with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000–12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20 deg spatially averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially averaged-adiabatic film effectiveness data, and spatially averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20 deg, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Matt Goodro ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20° or 30° with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000 to 12,000, freestream temperatures from 75°C to 115°C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Non-dimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20°, spatially-averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially-averaged adiabatic film effectiveness data, and spatially-averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20°, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Author(s):  
Christian Saumweber ◽  
Achmed Schulz

A comprehensive set of generic experiments is conducted to investigate the interaction of film cooling rows. Five different film cooling configurations are considered on a large scale basis each consisting of two rows of film cooling holes in staggered arrangement. The hole pitch to diameter ratio within each row is kept constant at P/D = 4. The spacing between the rows is either x/D = 10, 20, or 30. Fanshaped holes or simple cylindrical holes with an inclination angle of 30 deg. and a hole length of 6 hole diameters are used. With a hot gas Mach number of Mam = 0.3, an engine like density ratio of ρc/ρm = 1.75, and a freestream turbulence intensity of Tu = 5.1% are established. Operating conditions are varied in terms of blowing ratio for the upstream and, independently, the downstream row in the range 0.5&lt;M&lt;2.0. The results illustrate the importance of considering ejection into an already film cooled boundary layer. Adiabatic film cooling effectiveness and heat transfer coefficients are significantly increased. The decay of effectiveness with streamwise distance is much less pronounced downstream of the second row primarily due to pre-cooling of the boundary layer by the first row of holes. Additionally, a comparison of measured effectiveness data with predictions according to the widely used superposition model of Sellers [11] is given for two rows of fanshaped holes.


Author(s):  
Srinath V. Ekkad ◽  
Dyrk Zapata ◽  
Je-Chin Han

This paper presents the detailed heat transfer coefficients over a flat surface with one row of injection holes inclined streamwise at 35° for three blowing ratios (M=0.5–2.0). Three compound angles of 0°, 45°, and 90° with air (D.R.=0.98) and CO2 (D.R.=1.46) as coolants were tested at an elevated free-stream turbulence condition (Tu≈8.5%). The experimental technique involves a liquid crystal coating on the test surface. Two related transient tests obtained detailed heat transfer coefficients and film effectiveness distributions. Heat transfer coefficients increase with increasing blowing ratio for a constant density ratio but decrease with increasing density ratio for a constant blowing ratio. Heat transfer coefficients increase for both coolants over the test surface as the compound angle increases from 0° to 90°. The detailed heat transfer coefficients obtained using the transient liquid crystal technique, particularly in the near hole region, will provide a better understanding of the film cooling process in gas turbine components.


Author(s):  
C. A. Martin ◽  
K. A. Thole

This paper presents a blind CFD benchmark of a simulated leading edge for a turbine airfoil. The geometry studied was relevant for current designs with two rows of staggered film-cooling holes located at the stagnation location (θ = 0°) and at θ = 25°. Both rows of cooling holes were blowing in the same direction which was 90° relative to the streamwise direction and had an injection angle with respect to the surface of 20°. Realistic engine conditions were simulated including a density ratio of DR = 1.8 and an average blowing ratio of M = 2 for both rows of cooling holes. This blind benchmark coincided with an experimental study that took place in a wind tunnel simulation of a quarter cylinder followed by a flat afterbody. At the stagnation region, the CFD calculation overpredicted the adiabatic effectiveness because the model failed to predict a small separation region that was measured in the experiments. Good agreement was achieved, however, between the CFD predictions and the experimentally measured values of the laterally averaged adiabatic effectiveness downstream of the stagnation location. The coolant pathlines showed that flow passed from the first row of holes over the second row of cooling holes indicating a waste of the coolant.


Author(s):  
Kyle R. Vinton ◽  
Sara Nahang-Toudeshki ◽  
Lesley M. Wright ◽  
Andrew Carter

An experimental investigation of effusion film cooling has been completed for cylindrical, simple angle holes (θ = 20°), using a steady state, pressure sensitive paint (PSP) technique. The surface effectiveness measurements were obtained in a low speed wind tunnel where the average blowing ratio (M) was varied from 0.5 to 6. For all cases, the coolant–to–mainstream density ratio was fixed at DR = 1.0. The test surface was manufactured using direct metal laser sintering (DMLS), and was made to replicate full coverage film cooling typically seen for combustor cooling applications. The plate contained 10 staggered rows of film cooling holes, with P/D = 9.8 and S/D = 8.5. At blowing ratios greater than M = 1.0, the downstream film cooling effectiveness is greatly improved by the protection provided from the high momentum jets in the upstream rows. Within the latter-half of the matrix, the effectiveness measured on the surface gradually increased with each passing row. The combination of the holes made a substantial impact downstream, and the effect continued to grow all the way through the end of the plate. With the accumulation of the coolant above the surface, the coolant liftoff was mitigated and enhanced protection was observed on the surface. The DMLS manufacturing technique created surface and hole interior roughness. The hole interior roughness reduced the lateral average film cooling effectiveness by at least 50% when compared to previous investigations.


1996 ◽  
Vol 2 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Phillip M. Ligrani ◽  
Joon Sik Lee

Experimental results are presented which describe the development and structure of flow downstream of two staggered rows of film-cooling holes with compound angle orientations at high blowing ratios. These film cooling configurations are important because they are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 3d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 0.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes which becomes more pronounced as blowing ratio increases.


Sign in / Sign up

Export Citation Format

Share Document