Simulation of Trailing Edge Vortex Shedding in a Transonic Turbine Cascade

1998 ◽  
Vol 120 (1) ◽  
pp. 10-19 ◽  
Author(s):  
T. C. Currie ◽  
W. E. Carscallen

Midspan losses in the NRC transonic turbine cascade peak at an exit Mach number (M2) of ~1.0 and then decrease by ~40 percent as M2 is increased to the design value of 1.16. Since recent experimental results suggest that the decrease may be related to a reduction in the intensity of trailing edge vortex shedding, both steady and unsteady quasi-three-dimensional Navier–Stokes simulations have been performed with a highly refined (unstructured) grid to determine the role of shedding. Predicted shedding frequencies are in good agreement with experiment, indicating the blade boundary layers and trailing edge separated free shear layers have been modeled satisfactorily, but the agreement for base pressures is relatively poor, probably due largely to false entropy created downstream of the trailing edge by numerical dissipation. The results nonetheless emphasize the importance of accounting for the effect of vortex shedding on base pressure and loss.

Author(s):  
Tom C. Currie ◽  
William E. Carscallen

Mid-span losses in the NRC transonic turbine cascade peak at an exit Mach number (M2) of ∼1.0 and then decrease by ∼40% as M2 is increased to the design value of 1.16. Since recent experimental results suggest that the decrease may be related to a reduction in the intensity of trailing edge vortex shedding, both steady and unsteady quasi-3D Navier-Stokes simulations have been performed with a highly refined (unstructured) grid to determine the role of shedding. Predicted shedding frequencies are in good agreement with experiment, indicating the blade boundary layers and trailing edge separated free shear layers have been modelled satisfactorily, but the agreement for base pressures is relatively poor, probably due largely to false entropy created downstream of the trailing edge by numerical dissipation. The results emphasize the importance of accounting for the effect of vortex shedding on base pressure and loss.


Author(s):  
A. Gehrer ◽  
H. Lang ◽  
N. Mayrhofer ◽  
J. Woisetschläger

In this study, the evolution of the unsteady trailing edge vortex street downstream a linear turbine cascade is experimentally and computationally investigated. In a transonic cascade test stand, Laser Doppler velocimeter (LDV) measurements were acquired in several axial planes downstream of the blade trailing edge. In addition, direct detection of density changes near the trailing edge provide information about the frequency of a vortex shedding cycle. A two-dimensional upwind-biased Navier-Stokes solver has then been used to perform a series of steady and unsteady cascade simulations, allowing an in-depth study into the mechanisms of the trailing edge vortex shedding. The numerical results are compared with the experimental data to test the quality of the numerical simulations.


1996 ◽  
Vol 118 (3) ◽  
pp. 529-535 ◽  
Author(s):  
P. W. Giel ◽  
J. R. Sirbaugh ◽  
I. Lopez ◽  
G. J. Van Fossen

Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow nonuniformity. A three-dimensional, Navier–Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow nonuniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier–Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry that eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow nonuniformity has indeed been eliminated.


Author(s):  
Wei Ning ◽  
Li He

A numerical study has been carried out to investigate modelling issues on trailing edge vortex shedding. The vortex shedding from a circular cylinder and a VKI turbine blade is calculated using a 2-D unsteady multi-block Navier-Stokes solver. The unsteady stresses are calculated from the unsteady solutions. The distributions of the unsteady stresses are analysed and compared for the cylinder case and the cascade case, respectively. The time-averaged equations are then solved and the effectiveness of the “unsteady stresses” in suppressing trailing edge vortex shedding is checked. Finally, the time-independent solution produced by solving the time-averaged equations is compared with the time-averaged solution obtained by integrating the unsteady solutions. The numerical results have demonstrated that a time-independent vortex shedding solution can be achieved by solving the Navier-Stokes equations with the unsteady stresses and the time-averaged effects of the vortex shedding can be included.


Author(s):  
Andrea Arnone ◽  
Roberto Pacciani

A recently developed, time-accurate multigrid solver has been used to investigate the capability of predicting trailing edge vortex shedding by means of the Reynolds-Averaged Navier-Stokes equations and algebraic turbulence models. The study has been performed on a turbine stator blade for which experiments have recently been carried out. Calculations using a mixing-length based model for turbulence closure indicate the inception of shedding even on relatively coarse trailing edge (C-type) grids.


1994 ◽  
Author(s):  
P. W. Giel ◽  
J. R. Sirbaugh ◽  
I. Lopez ◽  
G. J. Van Fossen

Experimental measurements in the inlet of a transonic turbine blade cascade showed unacceptable pitchwise flow non-uniformity. A three-dimensional, Navier-Stokes computational fluid dynamics (CFD) analysis of the imbedded bellmouth inlet in the facility was performed to identify and eliminate the source of the flow non-uniformity. The blockage and acceleration effects of the blades were accounted for by specifying a periodic static pressure exit condition interpolated from a separate three-dimensional Navier-Stokes CFD solution of flow around a single blade in an infinite cascade. Calculations of the original inlet geometry showed total pressure loss regions consistent in strength and location to experimental measurements. The results indicate that the distortions were caused by a pair of streamwise vortices that originated as a result of the interaction of the flow with the imbedded bellmouth. Computations were performed for an inlet geometry which eliminated the imbedded bellmouth by bridging the region between it and the upstream wall. This analysis indicated that eliminating the imbedded bellmouth nozzle also eliminates the pair of vortices, resulting in a flow with much greater pitchwise uniformity. Measurements taken with an installed redesigned inlet verify that the flow non-uniformity has indeed been eliminated.


Author(s):  
A. P. Melzer ◽  
G. Pullan

The loss of Square, Round, and Elliptical turbine trailing edge geometries, and the mechanisms responsible, is assessed using a two-part experimental program. In the first part, a single blade experiment, in a channel with contoured walls, allowed rapid testing of a range of trailing edge sizes and shapes. In the second part, turbine blade cascades with a sub-set of sizes of the trailing edge geometries tested in part one were evaluated in a closed-loop variable density facility, at exit Mach numbers from 0.40 to 0.97, and exit Reynolds numbers from 1.5 x105 to 2.5 x106. Throughout the test campaign, detailed instantaneous Schlieren images of the trailing edge flows have been obtained to identify the underlying unsteady mechanisms in the base region. The experiments reveal the importance of suppressing transonic vortex shedding, and quantify the influence of this mechanism on loss. The state and thickness of the blade boundary layers immediately upstream of the trailing edge are of critical importance in determining the onset of transonic vortex shedding. Elliptical trailing edge geometries have also been found to be effective at suppressing transonic vortex shedding. For trailing edges that exhibit transonic vortex shedding, a mechanism is identified whereby reflected shed shockwaves encourage or discourage vortex shedding depending on the phase with which the shocks return to the trailing edge, capable of modifying the loss generated.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
A. P. Melzer ◽  
G. Pullan

The loss of square, round, and elliptical turbine trailing edge geometries, and the mechanisms responsible, is assessed using a two-part experimental program. In the first part, a single blade experiment, in a channel with contoured walls, allowed rapid testing of a range of trailing edge sizes and shapes. In the second part, turbine blade cascades with a subset of sizes of the trailing edge geometries tested in part one were evaluated in a closed-loop variable density facility, at exit Mach numbers from 0.40 to 0.97, and exit Reynolds numbers from 1.5 × 105 to 2.5 × 106. Throughout the test campaign, detailed instantaneous Schlieren images of the trailing edge flows have been obtained to identify the underlying unsteady mechanisms in the base region. The experiments reveal the importance of suppressing transonic vortex shedding, and quantify the influence of this mechanism on loss. The state and thickness of the blade boundary layers immediately upstream of the trailing edge are of critical importance in determining the onset of transonic vortex shedding. Elliptical trailing edge geometries have also been found to be effective at suppressing transonic vortex shedding. For trailing edges that exhibit transonic vortex shedding, a mechanism is identified whereby reflected shed shockwaves encourage or discourage vortex shedding depending on the phase with which the shocks return to the trailing edge, capable of modifying the loss generated.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 787-793
Author(s):  
Wei Ning ◽  
Li He

Sign in / Sign up

Export Citation Format

Share Document