Automated System for Analyzing Stress Intensity Factors of Three-Dimensional Cracks: Its Application to Analyses of Two Dissimilar Semi-Elliptical Surface Cracks in Plate

1997 ◽  
Vol 119 (1) ◽  
pp. 18-26 ◽  
Author(s):  
S. Yoshimura ◽  
J.-S. Lee ◽  
G. Yagawa

This paper describes a new automated system for analyzing the stress intensity factors (SIFs) of three-dimensional cracks. A geometry model containing one or several three-dimensional cracks is defined using a commercial CAD system, DESIGNBASE. Several local distributions of node density are chosen from the database of the present system, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay method. A user imposes material properties and boundary conditions onto parts of the geometry model such as loops and edges by clicking them with a mouse and by inputting values. For accurate analyses of the stress intensity factors, finer elements are generated in the vicinity of crack tips, thanks to the fuzzy knowledge processing. The singular elements such that the midpoint nodes near crack front are shifted at the quarter-points are automatically placed along the three-dimensional crack front. The complete finite element model generated is given to a commercial finite element code, MARC, and a stress analysis is performed. The stress intensity factors are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, two dissimilar semi-elliptical surface cracks in a plate subjected to uniform tension are solved, and their interaction effects are discussed in detail. It is shown from the results that ASME Boiler and Pressure Vessel Code, Section XI, Appendix A gives a conservative stress intensity factor for two identical adjacent surface cracks and for two dissimilar adjacent surface cracks.

2014 ◽  
Vol 986-987 ◽  
pp. 882-886
Author(s):  
Hong Yu Qi ◽  
Peng Chao Guo

External surface cracks can occur in cylindrical vessels due to damage and propagate in the manufacturing process and during service life. Most of research focuses on stress intensity factors for surface cracks with low aspect ratios, i.e., a/c ≤1.0. Situation may well arise where the aspect ratio of cracks is larger than one. An external longitudinal surface crack is assumed to be subjected to different types of hoop stress distributions acting perpendicular to the crack faces. The stress intensity factors (SIFs) along the crack front were determined through the three-dimensional finite element method. Then these results are used to compute approximate values of SIFs in the case of complex loadings by employing both the superposition principle and the power series expansions of the actual hoop stresses. It is found that the maximum stress intensity factor for external surface cracks with high aspect ratio occurs at different point to that with low aspect ratio.


Author(s):  
Yu. Rudyak ◽  
M. Pidgurskyi ◽  
I. Matvieieva ◽  
V. Groza ◽  
V. Sіchко ◽  
...  

A polarization-optical method for studying three-dimensional problems of fracture mechanics has been developed. The method was tested to determine the values of stress intensity factors (SIF) for surface cracks in thin plates and thin shells. The data of SIF values for surface cracks of different geometry, which are subjected to different loadings, are obtained. The experimentally obtained values of SIF were compared with those calculated analytically. The efficiency of the proposed technique for solving the corresponding problems of engineering practice is shown.


1980 ◽  
Vol 102 (4) ◽  
pp. 342-346 ◽  
Author(s):  
J. C. Newman ◽  
I. S. Raju

The purpose of this paper is to present stress-intensity factors for a wide range of semi-elliptical surface cracks on the inside of pressurized cylinders. The ratio of crack depth to crack length ranged from 0.2 to 1; the ratio of crack depth to wall thickness ranged from 0.2 to 0.8; and the ratio of wall thickness to vessel radius was 0.1 to 0.25. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employ singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated from a nodal-force method. An equation for the stress-intensity factors was obtained from the results of the present analysis. The equation applies over a wide range of configuration parameters and was within about 5 percent of the present results. A comparison was also made between the present results and other analyses of internal surface cracks in cylinders. The results from a boundary-integral equation method were in good agreement (± 2 percent) and those from another finite-element method were in fair agreement (± 8 percent) with the present results.


Sign in / Sign up

Export Citation Format

Share Document