Self-Sensing Active Suppression of Vibration of Flexible Steel Sheet

1996 ◽  
Vol 118 (3) ◽  
pp. 469-473 ◽  
Author(s):  
Ken-ichi Matsuda ◽  
Masahiro Yoshihashi ◽  
Yohji Okada ◽  
Andy C. C. Tan

In rolling processes, flexible steel sheet is supported by rollers and is bound to produce structural vibration. This vibration can cause severe problems to surface finish and affect the quality of the product. To overcome these problems, active vibration control has been proposed. This usually requires both sensors and actuators. The location of sensors and actuators plays a very important role in active vibration control. Moreover, a reliable sensor can be very expensive. This paper proposes a self-sensing vibration control using a push-pull type electromagnet to control the transverse vibration of the steel plate. The construction of the electromagnet has two types of coils, namely the bias coil and the control coil. Vibration displacement is estimated by using the mutual inductance change between the bias and the control coils. The estimated signal is proportional to the gap displacement. The proportional and derivative signals are fed back to the control coil to reduce the transverse vibration of the steel sheet. The proposed method is applied to a simple test rig to confirm the capability of the device. The results obtained are showing high possibility for reducing steel sheet vibration.

Author(s):  
Ken-ichi Matsuda ◽  
Yohji Okada

Abstract In rolling processes, flexible steel sheet is supported by rollers and is bound to produce structural vibration. This vibration can cause severe problem to surface finish and affect the quality of the product. To overcome this problem, active vibration control has been proposed. This usually requires both sensors and actuators. The location of sensors and actuators play a very important role in active vibration control. Moreover, a reliable sensor can be very expensive. This paper proposes a self-sensing vibration control using a push-pull type electromagnet to control the transverse vibration of the steel plate. The construction of the electromagnet has two types of coils, namely the bias coil and the control coil. Vibration displacement is estimated by using the mutual inductance change between the bias and the control coils. The estimated signal is proportional to the gap displacement. The proportional and derivative signal of which is fedback to the control coil to control the transverse vibration of the steel sheet. The proposed method is applied to a simple test rig to confirm the capability of the device. The results obtained are showing high possibility for reducing the sheet steel vibration.


Author(s):  
Fumio Doi ◽  
Kazuto Seto ◽  
Mingzhang Ren ◽  
Yuzi Gatate

Abstract In this paper we present an experimental investigation of active vibration control of a scaled bridge tower model under artificial wind excitation. The control scheme is designed on the basis of a reduced order model of the flexible structures using the LQ control theory, with a collocation of four laser displacement sensors and two hybrid electro-magnetic actuators. The experimental results in the wind tunnel show that both the bending and the twisting vibrations covering the first five modes of the structure are controlled well.


2005 ◽  
Vol 128 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Xianmin Zhang ◽  
Arthur G. Erdman

The optimal placement of sensors and actuators in active vibration control of flexible linkage mechanisms is studied. First, the vibration control model of the flexible mechanism is introduced. Second, based on the concept of the controllability and the observability of the controlled subsystem and the residual subsystem, the optimal model is developed aiming at the maximization of the controllability and the observability of the controlled modes and minimization of those of the residual modes. Finally, a numerical example is presented, which shows that the proposed method is feasible. Simulation analysis shows that to achieve the same control effect, the control system is easier to realize if the sensors and actuators are located in the optimal positions.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2026-2036
Author(s):  
Xiangdong Liu ◽  
Haikuo Liu ◽  
Changkun Du ◽  
Pingli Lu ◽  
Dongping Jin ◽  
...  

The objective of this work was to suppress the vibration of flexible structures by using a distributed cooperative control scheme with decentralized sensors and actuators. For the application of the distributed cooperative control strategy, we first propose the multiple autonomous substructure models for flexible structures. Each autonomous substructure is equipped with its own sensor, actuator, and controller, and they all have computation and communication capabilities. The primary focus of this investigation was to illustrate the use of a distributed cooperative protocol to enable vibration control. Based on the proposed models, we design two novel active vibration control strategies, both of which are implemented in a distributed manner under a communication network. The distributed controllers can effectively suppress the vibration of flexible structures, and a certain degree of interaction cooperation will improve the performance of the vibration suppression. The stability of flexible systems is analyzed by the Lyapunov theory. Finally, numerical examples of a cantilever beam structure demonstrate the effectiveness of the proposed methods.


Author(s):  
Hassan Ali Kadhem ◽  
Ahmed Abdul Hussein

Active vibration control is presented as an effective technique used for vibration suppression and for attenuating bad effects of disturbances on structure. In this work Proportional-Integral-Derivative control were employed to study suppression of active vibration wing affected by wind airflow. Two different composite wings with different manufacturing materials had been made with specific size to be suitable for using in wind tunnel. Piezoelectric (PZT (transducers are used as sensors and actuators in vibration control systems. The velocity was 25 m/s and three different attack angles (0, 10, 20 degrees) had been taken to show their effect on the wings vibrations suppression. The results shows that the suppression of the wing amplitude is reduced when the attack angle increases for both woven and random composite wing matt and this happened due to the vortex which became more violent at the increase of attack angle and also due to the area that face the wind which will increase when the attack angle increase and this will reduces the suppression. The maximum control amplitude of woven Glass-fiber matt was 1.75cm and the damping was about 38 % at zero attack angle while it was 2cm and the damping was about 26 % at 20 degree attack angle for random Glass-fiber composite matt


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Tao Tao ◽  
Chakradhar Byreddy ◽  
Kenneth D. Frampton

The purpose of this work is to experimentally demonstrate a fault-tolerant active vibration control system. Active vibration control is achieved using piezoceramic sensors and actuators (transducers) that are attached to a simply supported beam. These transducers are used by a set of optimal H2 feedback compensators to minimize the lateral vibration of a beam. Actuator faults are detected and isolated with a Beard–Jones fault detection filter. This filter is a special case of Luenberger observer, which produces a residual output with specific directional properties in response to a system fault. In this current research work, a new Beard–Jones filter design methodology is introduced that permits its use on high-order systems and also on systems with feed-through dynamics. The output of this detection filter is monitored by a hybrid automaton that determines when faults occur. This hybrid automaton then directs the selection of a feedback compensator specifically designed for the detected system fault state. The result is a vibration control system that is capable of maintaining optimal performance in the presence of system faults.


2010 ◽  
Vol 37-38 ◽  
pp. 439-443 ◽  
Author(s):  
Zhen Ning Hou ◽  
Zhi Min Feng ◽  
Hai Gang Hu ◽  
Guang Bin Wu

MR dampers are new kind of the most promising devices for structural vibration control. In this paper, an overview of the structure and working principle of shear-valve mode magnetorheological (MR) damper is given. An experimental study was carried out to test the performance characteristics of a shear-valve mode MR damper, its dynamic testing was performed on a Material Testing System (MTS) under sinusoidal and triangle excitation. Based on experimental data, the dynamic characteristics, energy dissipation and dynamic response time were analyzed. The present work lays down a foundation for MR damper application in the semi-active vibration control system.


Sign in / Sign up

Export Citation Format

Share Document