A Dynamic Material Parameter Estimation Procedure for Soft Tissue Using a Poroelastic Finite Element Model

1994 ◽  
Vol 116 (1) ◽  
pp. 19-29 ◽  
Author(s):  
J. P. Laible ◽  
D. Pflaster ◽  
B. R. Simon ◽  
M. H. Krag ◽  
M. Pope ◽  
...  

A three-dimensional finite element model for a poroelastic medium has been coupled with a least squares parameter estimation method for the purpose of assessing material properties based on intradiscal displacement and reactive forces. Parameter optimization may be based on either load or displacement control experiments. In this paper we present the basis of the finite element model and the parameter estimation process. The method is then applied to a test problem and the computational behavior is discussed. Sequential optimization on different parameter groups was found to have superior convergence properties. Some guidelines for choosing the starting parameter values for optimization were deduced by considering the form of the objective function. For load control experiments, in which displacement data is used for the optimization, the starting values for the elastic modulus should be lower in magnitude than an “anticipated” modulus. The permeability starting values should be higher than an anticipated permeability. For displacement control experiments, the reverse is true. The optimization scheme was also tested on data with random variations.

1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


1985 ◽  
Vol 52 (4) ◽  
pp. 801-805 ◽  
Author(s):  
P. R. Heyliger ◽  
J. N. Reddy

A quasi-three dimensional elasticity formulation and associated finite element model for the stress analysis of symmetric laminates with free-edge cap reinforcement are described. Numerical results are presented to show the effect of the reinforcement on the reduction of free-edge stresses. It is observed that the interlaminar normal stresses are reduced considerably more than the interlaminar shear stresses due to the free-edge reinforcement.


Author(s):  
A Ktari ◽  
A Abdelkefi ◽  
N Guermazi ◽  
P Malecot ◽  
N Boudeau

During tube hydroforming process, the friction conditions between the tube and the die have a great importance on the material plastic flow and the distribution of residual stresses of the final component. Indeed, a three-dimensional finite element model of a tube hydroforming process in the case of square section die has been performed, using dynamic and static approaches, to study the effect of the friction conditions on both plastic flow and residual stresses induced by the process. First, a comparative study between numerical and experimental results has been carried out to validate the finite element model. After that, various coefficients of friction were considered to study their effect on the thinning phenomenon and the residual stresses distribution. Different points have been retained from this study. The thinning is located in the transition zone cited between the straight wall and the corner zones of hydroformed tube due to the die–tube contact conditions changes during the process. In addition, it is clear that both die–tube friction conditions and the tube bending effects, which occurs respectively in the tube straight wall and corner zones, are the principal causes of the obtained residual stresses distribution along the tube cross-section.


Sign in / Sign up

Export Citation Format

Share Document