Threshold Stress Criterion in New Wheel/Rail Interaction for Limiting Rail Damage Under Heavy Axle Loads

1992 ◽  
Vol 114 (3) ◽  
pp. 284-288 ◽  
Author(s):  
S. Kumar ◽  
S. P. Singh

This paper presents a qualitative discussion of the effects of increasing new (initial) wheel-rail contact stresses on the degree of damage to the rail due to heavy axle loads. The importance and need of heavy axle loads and its relationship to rail damage as a result of the increasing wheel-rail contact stresses is discussed. Various mechanisms of energy absorption/losses due to free rolling and modes of rail damage are presented. These modes include surface and internal damage due to wear, contact shear, plasticity, fatigue, shelling, crack formation, etc. The concept of threshold stress observed in free rolling friction much earlier by Drutowski is discussed and analyzed. It is believed by the authors that the threshold stress is s material property. This concept of threshold stress, based on sharply increased rates of wear in free rolling contact, is then presented and analyzed. Considerations of increased plasticity-region development, due to increasing contact stresses and their relationship to increased rates of wear seen in experiments, is utilized to determine an upper bound of contact stresses for new wheel and rail under heavy axle load conditions. It is indicated that new wheel-rail profiles, which will achieve contact stresses below the threshold stress, will enable the U.S. railroads to carry heavy axle loads without serious future damage to the rails. It is concluded that a satisfactory solution for maintaining rail integrity under heavy axle loads is possible with proper design accompanied with laboratory experimentation for the new steels as they may be used in the rails.

1992 ◽  
Vol 114 (1) ◽  
pp. 109-115 ◽  
Author(s):  
S. P. Singh ◽  
S. Kumar

This study is a continuation of earlier investigations to determine acceptable upper bound of contact stresses (threshold stress) for new wheel and rail under heavy axle load conditions. Using sharply increased wear rate (as initial maximum contact stress increases) under free rolling conditions as an indicator of threshold stress, laboratory investigations of wheel-rail rolling contact wear, simulating the 125-ton car wheel load, were conducted. Tangent track conditions with clean and dry surfaces were tested on two facilities; one of one-quarter scale and the other of one-fifteenth scale wheel-rail simulation. The earlier experiments conducted in the IIT Railroad Engineering Laboratory to investigate threshold stress used a varying load with the same wheel-rail profiles, the present study used constant load with varying wheel-rail profiles to determine whether the above increase in wear rate phenomenon will still be observed. While the results of the small (1/15th) scale facility were not considered quantitatively conclusive because of small size, qualitatively they indicated the presence of threshold stress phenomenon. The results of the one-quarter scale test facility very clearly confirmed that there is indeed a threshold stress above which the rolling contact wear rates increased sharply. The value of this stress, found to be approximately the same as reported in the earlier study, was nearly 200 ksi (for standard carbon steel rail). From the earlier and the present investigations of threshold stress, it is clearly concluded that the increased wear rates are primarily due to the increased initial contact stresses and 200 ksi is the value of threshold stress for standard carbon steel rail. Initial wheel-rail contact stresses for new wheel-rail should not be allowed to exceed this value to reduce damage to rail for heavy axle loads. It is recommended that new wheel-rail profiles should be developed to achieve stresses at or below this threshold stress level. Benefits of improved rail life with this approach are also discussed.


2016 ◽  
Vol 121 ◽  
pp. 215-226 ◽  
Author(s):  
W. Solano-Alvarez ◽  
E.J. Pickering ◽  
M.J. Peet ◽  
K.L. Moore ◽  
J. Jaiswal ◽  
...  

Wear ◽  
1991 ◽  
Vol 144 (1-2) ◽  
pp. 139-152 ◽  
Author(s):  
P.J. Mutton ◽  
C.J. Epp ◽  
J. Dudek

2014 ◽  
Vol 1652 ◽  
Author(s):  
Regina Fuchs ◽  
Thomas Weinhart ◽  
Jan Meyer ◽  
Hao Zhuang ◽  
Thorsten Staedler ◽  
...  

ABSTRACTA plethora of applications in pharmacy, cosmetics, food industry and other areas are directly linked to the research fields of particle technology and contact mechanics. Here, a typical particle ensemble features particle sizes ranging from the nanometer up to the micrometer regime. In this context we introduce a nanoindentation based approach capable of probing mechanical interaction of micron-sized particles. Basically, the concept of the colloid probe technique, which is well established in the AFM community, is transferred to a nanoindenter. In particular, this setup allows addressing limitations, which are typically associated with AFM based techniques, such as particle weight and accessible load regime. Additionally, we will show the versatility of this approach by presenting simple experimental paths capable of probing sliding, rolling and torsional friction. The potential of such setting is shown by studying rolling friction of silica microspheres featuring radii of about 2.5µm, 10µm, 25 and 50µm in contact with various substrates, respectively. Substrates utilized within the framework of this study are Si surfaces featuring various roughness as well as flat gold films (300nm film thickness). Key aspects of this work include the influence of surface roughness, adhesion force, humidity and the elastic/plastic transition on the rolling contact of the corresponding particles.


Author(s):  
K Six ◽  
T Mihalj ◽  
C Marte ◽  
D Künstner ◽  
S Scheriau ◽  
...  

In this study, T-Gamma and Wedge models have been compared with each other for the prediction of surface-initiated rolling contact fatigue cracks on rail surfaces. Both models are able to account for different observed rolling contact fatigue-wear regimes in tracks, but with very different physical backgrounds. The T-Gamma model uses empirically determined damage functions by introducing a relationship between the wear number (T-Gamma) and the rolling contact fatigue damage increment. Different rolling contact fatigue-wear regimes are considered in this empirical approach based on the idea that initiated cracks get partially or fully removed by the wear mechanism, not accounting for the full complexity of the occurring tribological phenomena. The Wedge model represents a physical approach, where contact stresses and its impact on plastic deformations and related material anisotropy are considered. Thus, the prediction of different rolling contact fatigue-wear regimes is based on these physical relationships, where plastic shear deformations in the near-surface layer play a key role. For comparison, the wheel–rail contact data from stochastic multibody dynamics simulations of a metro vehicle with conventional bogie technology running in three curve radii have been used. While the T-Gamma model always predicts the same rolling contact fatigue damage increment for a given T-Gamma value, the Wedge model shows a scattering of the predicted rolling contact fatigue damage increments when plotting them over T-Gamma because of the explicit consideration of contact stresses. Thus, each scenario consisting, for example, of certain vehicles, curve radius, wheel–rail profile combination, friction conditions, rail material, etc. needs its own damage function in the T-Gamma world. This should be kept in mind when applying the standard T-Gamma model to scenarios which differ significantly from the scenario it has been parameterised for.


Sign in / Sign up

Export Citation Format

Share Document