A Note on Interface Cracks With and Without Friction in Contact Zone

1994 ◽  
Vol 61 (4) ◽  
pp. 994-995 ◽  
Author(s):  
X. Deng

A complete set of Comninou’s bimaterial interface crack-tip fields with and without friction in the contact zone (Comninou, 1977a,b) is given in terms of several arbitrary analytic functions. When the bimaterial becomes homogeneous, the complex function representation fully describes the crack-tip field for a cracked body under conditions of crack surface contact and slip, which can occur when the body is subjected to combined compression and shear loadings.

2002 ◽  
Vol 69 (5) ◽  
pp. 693-696 ◽  
Author(s):  
J. Wu

The sextic approach was used to investigate the asymptotic field of a bimaterial interface crack in the entire supersonic regime and extended to include the combination of isotropic and homogeneous materials, where the sextic method had been considered difficult. Application to typical systems was demonstrated.


2016 ◽  
Vol 853 ◽  
pp. 281-285
Author(s):  
Jun Hui Zhang ◽  
Yan Wei Dai

Creep crack within weldments are very common in engineering practices, and the cracking location in these welding structures always appears at the HAZ location. The mismatch effect on the mixed mode creep crack is still not clear in these available literatures. The aim of this paper is to investigate the mismatch influence on the creep crack of mixed mode thoroughly. A mixed mode creep crack within HAZ is established in this paper. The leading factor that dominates the creep crack tip field under mixed loading mode is studied. The influences of mismatch effect on mode mixity, stress distribution and stress triaxiality are proposed. The difference of mixed mode creep crack and normal mode I or mode II creep crack are compared. The influence of mixity factor on the transient and steady state creep of crack tip are also analyzed.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-307-C3-312
Author(s):  
K. KUSSMAUL ◽  
T. DEMLER ◽  
A. KLENK

2009 ◽  
Vol 36 (4) ◽  
pp. 299-327 ◽  
Author(s):  
R. Nikolic ◽  
Jelena Djokovic

In this paper is presented the new approach to asymptotic analysis of the stress and strain fields around a crack tip that is propagating dynamically along a bimaterial interface. Through asymptotic analysis the problem is being reduced to solving the Riemann-Hilbert's problem, what yields the strain potential that is used for determination of the strain field around a crack tip. The considered field is that of a dynamically propagating crack with a speed that is between zero and shear wave speed of the less stiffer of the two materials, bound along the interface. Using the new approach in asymptotic analysis of the strain field around a tip of a dynamically propagating crack and possibilities offered by the Mathematica programming package, the results are obtained that are compared to both experimental and numerical results on the dynamic interfacial fracture known from the literature. This comparison showed that it is necessary to apply the complete expression obtained by asymptotic analysis of optical data and not only its first term as it was done in previous analyses.


2021 ◽  
pp. 20-23
Author(s):  
S. V. Pashukevich ◽  

The work conducts laboratory tests on the rubber of the first group of GOST 8752-70 with the introduction of the metal components. The filler is introduced into the rubber mixture on laboratory rollers. Fine powders of copper (Cu), tin (Sn) and lead (Pb) are used as fillers. The dependences of the temperature in the contact zone of the sample and the body of revolution on the concentration of the filler and the dependence of wear on the concentration of the filler for the same loads and sliding speeds are obtained, the fillers that give the rubber the greatest wear resistance are revealed, and the rational amount of the filler is determined. The positive results of laboratory tests give grounds to recommend various equipment including aerospace equipment for use in sealing devices of hydraulic systems, rubber products with metal fillers in the indicated concentrations, which will extend their service life and increase their reliability


Author(s):  
Theodore Zirkle ◽  
Luke Costello ◽  
Ting Zhu ◽  
David L. McDowell

Abstract The diffusion of hydrogen in metals is of interest due to the deleterious influence of hydrogen on material ductility and fracture resistance. It is becoming increasingly clear that hydrogen transport couples significantly with dislocation activity. In this work, we employ a coupled diffusion-crystal plasticity model to incorporate hydrogen transport associated with dislocation sweeping and pipe diffusion in addition to standard lattice diffusion. Moreover, we consider generation of vacancies via plastic deformation and stabilization of vacancies via trapping of hydrogen. The proposed hydrogen transport model is implemented in a physically-based crystal viscoplasticity framework to model the interaction of dislocation substructure and hydrogen migration. In this study, focus is placed on hydrogen transport and trapping within the intense deformation field of a crack tip plastic zone. We discuss the implications of the model results in terms of constitutive relations that incorporate hydrogen effects on crack tip field behavior and enable exploration of hydrogen embrittlement mechanisms.


Sign in / Sign up

Export Citation Format

Share Document