A Study of Forced Convection Direct Air Cooling in the Downstream Vicinity of Heat Sinks

1990 ◽  
Vol 112 (3) ◽  
pp. 234-240 ◽  
Author(s):  
G. L. Lehmann ◽  
S. J. Kosteva

An experimental study of forced convection heat transfer is reported. Direct air cooling of an electronics packaging system is modeled by a channel flow, with an array of uniformly sized and spaced elements attached to one channel wall. The presence of a single or complete row of longitudinally finned heat sinks creates a modified flow pattern. Convective heat transfer rates at downstream positions are measured and compared to that of a plain array (no heat sinks). Heat transfer rates are described in terms of adiabatic heat transfer coefficients and thermal wake functions. Empirical correlations are presented for both variations in Reynolds number (5000 < Re < 20,000) and heat sink geometry. It is found that the presence of a heat sink can both enhance and degrade the heat transfer coefficient at downstream locations, depending on the relative position.

Author(s):  
SW Pua ◽  
KS Ong ◽  
KC Lai ◽  
MS Naghavi

Downward lighting light-emitting diodes require cooling with cylindrical fin heat sinks to be mounted on top and cooled under natural convection air cooling mode. Performance simulation would involve specification of the heat transfer coefficient. Numerous methods are available to simulate the performance of conventional plate fin heat sinks including computational fluid dynamics packages. It would be feasible to perform simulation based on conventional flat plate fin heat sinks. A cylindrical fin heat sinks could be simply treated as a plate fin heat sink, if we imagine it cut open and laid out horizontally. A theoretical model is proposed in this paper. An experimental investigation is conducted here to validate its accuracy. Convective heat transfer coefficients were experimentally determined for a horizontally and vertically inclined bare plate operating under natural and forced air cooling modes. In addition, a vertical plate fin heat sink and a vertical cylindrical fin heat sink under natural convection were investigated. Power inputs were kept from 5 to 40 W in order to keep operating temperatures below 100 ℃. Comparison of the experimental heat transfer coefficients and those obtained from well-known existing Nusselt number correlations show that agreement was poor for the bare plate but satisfactory for the plate and cylindrical fin heat sinks. Although they are within the generally accepted range, it would be advisable for actual measurements to be carried out in order to provide more accurate sizing for thermal measurements.


Author(s):  
Jason Stafford ◽  
Ed Walsh ◽  
Vanessa Egan ◽  
Pat Walsh ◽  
Yuri S. Muzychka

This paper discusses the importance of developing cooling solutions for low profile devices. This is addressed with an experimental and theoretical study on forced convection cooling solution designs that could be implemented into such devices. Conventional finned and corresponding finless designs of equal exterior dimensions are considered for three different heat sink profiles ranging from 1mm to 4mm profile in combination with a commercially available radial blower. The results show that forced convection heat transfer rates can be enhanced by up to 55% using finless designs at low profiles with relatively small footprint areas. The advantages of both finned and finless geometries are presented along with the limitations of the customary finned heat sink design at low profile scales. The results also show large increases in heat transfer rates over that predicted which can be attained at the low profile scale based on geometry selection. Dimensionless comparisons are made between experimental results and combined hydrodynamic and thermally developing duct flow theory which is representative of the flow regime within both the finned and finless geometries. Overall, this paper provides optimization and geometry selection criteria which are relevant to designers of low profile cooling solutions.


Author(s):  
Eric D. Truong ◽  
Erfan Rasouli ◽  
Vinod Narayanan

A combined experimental and computational fluid dynamics study of single-phase liquid nitrogen flow through a microscale pin-fin heat sink is presented. Such cryogenic heat sinks find use in applications such as high performance computing and spacecraft thermal management. A circular pin fin heat sink in diameter 5 cm and 250 micrometers in depth was studied herein. Unique features of the heat sink included its variable cross sectional area in the flow direction, variable pin diameters, as well as a circumferential distribution of fluid into the pin fin region. The stainless steel heat sink was fabricated using chemical etching and diffusion bonding. Experimental results indicate that the heat transfer coefficients were relatively unchanged around 2600 W/m2-K for flow rates ranging from 2–4 g/s while the pressure drop increased monotonically with the flow rate. None of the existing correlations in literature on cross flow over a tube bank or micro pin fin heat sinks were able to predict the experimental pressure drop and heat transfer characteristics. However, three dimensional simulations performed using ANSYS Fluent showed reasonable (∼7 percent difference) agreement in the average heat transfer coefficients between experiments and CFD simulations.


Author(s):  
Massimiliano Rizzi ◽  
Ivan Catton

An experimental study of a pin fin heat sink was carried out in support of the development of heat sink optimization methods requiring more detailed measurements be made. Measurements of heat flux and temperature are used to separately determine heat transfer coefficients for the pins and the base region between the pins. Three pitch to diameter ratios (distance from pin center to pin center measured diagonally) were studied: P/d = 3/1, 9/4, 3/2. Heat generation was accomplished using cartridge heaters inserted into a copper block. The high thermal conductivity of the copper ensured that the surface beneath the heat sink would be at a constant temperature. The cooling fluid was air and the experiments were conducted with a Reynolds numbers based on a porous media type hydraulic diameter ranging from 500 to 25000. The channel had a shroud that touches the fin tips, eliminating any flow bypass. The pin surface heat transfer coefficients match the values reported by Kays and London and by Zukauskas. The base region heat transfer coefficients were, surprisngly, larger than the pin values.


Author(s):  
Zhou Zhao ◽  
Qiusheng Liu ◽  
Katsuya Fukuda

Transient forced convection heat transfer due to exponentially increasing heat input to a heater is important as a database for safety assessment of the transient heat transfer process in a Very High Temperature Reactor (VHTR). The knowledge of heat transfer enhancement using a heater with twisted configuration is also important for the high performance design of intermediate heater exchanger (IHX) in VHTR system. In this study, forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a short thin twisted plate with various helix angles was experimentally studied. A forced convection heat transfer experimental apparatus was used to measure the experimental data. The test heater was mounted horizontally along the center part of a circular test channel. Twisted plates were made of thin platinum plate with a thickness of 0.1 mm and width of 2 mm and 4 mm. The heat generation rates of the heater were controlled and measured by a heat input control system. The heat generation rate, Q̇, was raised with exponential function, Q̇ = Q0exp(t/τ). Where, t is time, and τ is period of heat generation rate. The mean temperature of the test heater was measured by resistance thermometry. The heat flux was obtained by the energy conservation equation. The test heater surface temperature was calculated from heat conduction equation of the heater. The transient heat transfer experimental data were measured for the periods ranged from 80 ms to 17 s and at a gas temperature of 303 K under 500 kPa. The flow velocities ranged from 4 m/s to 10 m/s. In the experiments, the twisted plates with different width were tested. The surface temperature and heat flux are increasing exponentially with the time. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period longer than about 1 s, and it becomes higher for the period shorter than about 1 s. The heat transfer coefficients for total length of the twisted plate were compared with the values of flat plate which has the same width and thickness with the twisted one. The local mean heat transfer coefficients have been tested as well. The heat transfer coefficients of twisted plate are about 10% for 2 mm-width one and15% for 4 mm-width one higher than those of flat plate with same width at the quasi-steady state. And also, the heat transfer coefficients for the first half pitch are 24% higher than that for the total length of the same twisted plate. Therefore, an enhancement in the heat transfer coefficient for the twisted plate was clarified.


1991 ◽  
Vol 113 (1) ◽  
pp. 27-32 ◽  
Author(s):  
G. L. Lehmann ◽  
J. Pembroke

Forced convection air cooling of an array of low profile, card-mounted components has been investigated. A simulated array is attached to one wall of a low aspect ratio duct. This is the second half of a two-part study. In this second part the presence of a longitudinally finned heat sink is considered. The heat sink is a thermally passive “flow disturbance”. Laboratory measurements of the heat transfer rates downstream of the heat sink are reported and compared with the measured values which occur when no heat sinks are present. Data are presented for three heat sink geometries subject to variations in channel spacing and flow rate. In the flow range considered laminar, transitional and turbulent heat transfer behavior has been observed. The presence of a heat sink appears to “trip” the start of transition at lower Reynolds numbers than when no heat sinks are present. A Reynolds number based on component length provides a good correlation of the heat transfer behavior due to variations in flow rate and channel spacing. Heat transfer is most strongly effected by flow rate and position relative to the heat sink. Depending on the flow regime (laminar or turbulent) both relative enhancement and reductions in the component Nusselt number have been observed. The impact of introducing a heat sink is greatest for flow rates corresponding to transitional behavior.


Sign in / Sign up

Export Citation Format

Share Document