A Numerical Study of the Unsteady Effects of Droplet Evaporation and Ignition in Homogeneous Environments of Fuel and Air

1994 ◽  
Vol 116 (3) ◽  
pp. 194-200 ◽  
Author(s):  
P. Samuel ◽  
G. A. Karim

The transient processes of droplet heating, vaporization and ignition in a quiescent heated environment of a homogeneous mixture of air and fuel that is potentially combustible are analyzed. A system of partial differential equations that governs this hybrid diffusional-premixed processes is presented. The equations were solved numerically for an n-heptane droplet vaporizing in a homogeneous environment of methane and air. The effective reaction rate of the oxidation processes was assumed throughout to equal the sum of the reaction rates due to droplet and auxiliary fuels. The gross reaction rates used in the model for the droplet and auxiliary fuels were obtained from curve fitting of reaction rates results obtained from detailed chemical kinetics for the two fuels system. It is to be shown, for example, that the presence of an auxiliary fuel with the air in the surrounding environment of the droplet enhances the rates of the ignition/combustion processes of the droplet.

Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Fuel ◽  
2017 ◽  
Vol 191 ◽  
pp. 25-35 ◽  
Author(s):  
Zvonimir Petranović ◽  
Wilfried Edelbauer ◽  
Milan Vujanović ◽  
Neven Duić

Author(s):  
Viswanath R. Katta ◽  
William M. Roquemore

A swirl-stabilized combustor utilizes recirculation zones for stabilizing the flame. The performance of such combustors could depend on the fuel used as the cracked fuel products may enter the recirculation-zones and alter their characteristics. A numerical study is conducted for understanding the effects of fuel variation on the combustion and unburned-hydrocarbon-emission characteristics of a laboratory swirl combustor. A time-dependent, detailed-chemistry CFD model UNICORN is used. Six binary fuel mixtures formulated with n-dodecane and n-heptane, m-xylene, iso-octane or hexadecane are considered. A semi-detailed chemical-kinetics model (CRECK-0810) involving 206 species and 5652 reactions for the combustion of these fuels is incorporated into UNICORN code. Calculations are performed for a fuel-lean condition, which represents cruise operation of an aircraft. Combustor flows simulated with different fuel mixtures yielded nearly the same flowfields and flame structures. Production of the intermediate cracked fuel species that are key for the final flame structure and emissions seems to be independent of the fuel used. This finding could greatly simplify the detailed chemical kinetics used for obtaining cracked products. As the cracked fuel species are completely consumed with in the flame zone, no emissions are observed at the combustor exit for the considered fuel-lean condition.


Sign in / Sign up

Export Citation Format

Share Document