Heat Transfer Measurements in an Internal Cooling System Using a Transient Technique With Infrared Thermography

Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180° bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross sections, respectively, to achieve an engine-similar configuration. Within the channels rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Christian Egger ◽  
Jens von Wolfersdorf ◽  
Martin Schnieder

In this paper, a transient method for measuring heat transfer coefficients in internal cooling systems using infrared thermography is applied. The experiments are performed with a two-pass internal cooling channel connected by a 180 deg bend. The leading edge and the trailing edge consist of trapezoidal and nearly rectangular cross-sections, respectively, to achieve an engine-similar configuration. Within the channels, rib arrangements are considered for heat transfer enhancement. The test model is made of metallic material. During the experiment, the cooling channels are heated by the internal flow. The surface temperature response of the cooling channel walls is measured on the outer surface by infrared thermography. Additionally, fluid temperatures as well as fluid and solid properties are determined for the data analysis. The method for determining the distribution of internal heat transfer coefficients is based on a lumped capacitance approach, which considers lateral conduction in the cooling system walls as well as natural convection and radiation heat transfer on the outer surface. Because of time-dependent effects, a sensitivity analysis is performed to identify optimal time periods for data analysis. Results are compared with available literature data.


Author(s):  
Hao-Wei Wu ◽  
Hootan Zirakzadeh ◽  
Je-Chin Han ◽  
Luzeng Zhang ◽  
Hee-Koo Moon

A three-passage internal cooling test model with a 180° U-bend at the hub turn portion was used to perform the investigation. The flow is radially inward at the second passage, while it is radially outward at the third passage after the U-bend. Measurement was conducted at the second and the third passages. Aspect ratio of the second passage is 2:1 (AR=2), while the third passage is wedge-shaped with side wall slot ejections. The squared ribs with P/e = 8, e/Dh = 0.1, α = 45°, were configured on both leading and trailing surfaces along the second passage, and also the inner half of the third passage. Three rows of cylinder-shaped pin-fins with diameter of 3 mm were placed at both leading and trailing surfaces of the outer half of the third passage. The results showed that the rotating effects on radial inward flow and radial outward flow are consistent with previous studies. When there is no turning vane, heat transfer on the leading surface at hub turn region is increased by rotation, while it is decreased on the trailing surface. The presence of turning vane reduces the effect of rotation on hub turn portion. Ejection and pin-fin array enhance heat transfer at the third passage. Even though there is mass loss of cooling air along the third passage with side wall slot ejection, the heat transfer coefficient remains high until the end of the passage. Correlation between regional heat transfer coefficients and rotation numbers is presented for both cases of with and without turning vane.


2008 ◽  
Vol 130 (7) ◽  
Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh=2.22cm, Ac=7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0 to 1.0 and 0 to 3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the result of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180deg turn at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the nondimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.


Author(s):  
Lesley M. Wright ◽  
Yao-Hsien Liu ◽  
Je-Chin Han ◽  
Sanjay Chopra

Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh = 2.22cm, Ac = 7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0–1.0 and 0–3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the results of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180° at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the non-dimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.


Author(s):  
Bingran Li ◽  
Cunliang Liu ◽  
Lin Ye ◽  
Huiren Zhu ◽  
Fan Zhang

Abstract To investigate the application of ribbed cross-flow coolant channels with film hole effusion and the effects of the internal cooling configuration on film cooling, experimental and numerical studies are conducted on the effect of the relative position of the film holes and different orientation ribs on the film cooling performance. Three cases of the relative position of the film holes and different orientation ribs (post-rib, centered, and pre-rib) in two ribbed cross-flow channels (135° and 45° orientation ribs) are investigated. The film cooling performances are measured under three blowing ratios by the transient liquid crystal measurement technique. A RANS simulation with the realizable k-ε turbulence model and enhanced wall treatment is performed. The results show that the cooling effectiveness and the downstream heat transfer coefficient for the 135° rib are basically the same in the three position cases, and the differences between the local effectiveness average values for the three are no more than 0.04. The differences between the heat transfer coefficients are no more than 0.1. The “pre-rib” and “centered” cases are studied for the 45° rib, and the position of the structures has little effect on the film cooling performance. In the different position cases, the outlet velocity distribution of the film holes, the jet pattern and the discharge coefficient are consistent with the variation in the cross flow. The related research previously published by the authors showed that the inclination of the ribs with respect to the holes affects the film cooling performance. This study reveals that the relative positions of the ribs and holes have little effect on the film cooling performance. This paper expands and improves the study of the effect of the internal cooling configuration on film cooling and makes a significant contribution to the design and industrial application of the internal cooling channel of a turbine blade.


Author(s):  
Fabio Pagnacco ◽  
Luca Furlani ◽  
Alessandro Armellini ◽  
Luca Casarsa ◽  
Anthony Davis

The present contribution is focused on heat transfer measurements on internal cooling channels of a high pressure gas turbine blade in static and rotating conditions. A novel rig designed for the specific purpose was used to assess the heat transfer coefficients on a full internal cooling scheme of an idealized blade. The channel has a multi-pass design. Coolant enters at the blade hub in the leading edge region and move radially outwards inside a two-sided ribbed channel. The second passage is again a two-sided ribbed channel with a trapezoidal cross section of high aspect ratio, while inside the third leg low aspect-ratio cylindrical pin fins are arranged in a staggered configuration to promote flow turbulence. Inside the third passage, the coolant is progressively discharged at the blade trailing edge and finally at the blade tip. The test model differs with respect to the real design only because there is no curvature due to the blade camber. Conversely, the correct stagger angle of the real blade with respect to the rotation axis is preserved. Experiments were performed for static and rotating conditions with engine similar conditions of Re=21000 and Ro=0.074, both defined at the channel inlet. Transient liquid crystal technique was used for the measurement of the heat transfer coefficient (HTC) on both pressure and suction sides internal surfaces of the channel. From the spatially resolved HTC maps available, it is possible to characterize the thermal performances of the whole passage and to highlight the effect of rotation.


Author(s):  
Lindsey V. Randle ◽  
Brian M. Fronk

Abstract In this study, we use infrared thermography to calculate local heat transfer coefficients of top and bottom heated flows of near-critical carbon dioxide in an array of parallel microchannels. These data are used to evaluate the relative importance of buoyancy for different flow arrangements. A Joule heated thin wall made of Inconel 718 applies a uniform heat flux either above or below the horizontal flow. A Torlon PAI test section consists of three parallel microchannels with a hydraulic diameter of 923 μm. The reduced inlet temperature (TR = 1.006) and reduced pressure (PR = 1.03) are held constant. For each heater orientation, the mass flux (520 kgm−2s−2 ≤ G ≤ 800 kgm−2s−2) and heat flux (4.7 Wcm−2 ≤ q″ ≤ 11.1 Wcm−2) are varied. A 2D resistance network analysis method calculates the bulk temperatures and heat transfer coefficients. In this analysis, we divide the test section into approximately 250 segments along the stream-wise direction. We then calculate the bulk temperatures using the enthalpy from the upstream segment, the heat flux in a segment, and the pressure. To isolate the effect of buoyancy, we screen the data to omit conditions where flow acceleration may be important or where relaminarization may occur. In the developed region of the channel, there was a 10 to 15 percent reduction of the local heat transfer coefficients for the upward heating mode compared to downward heating with the same mass and heat fluxes. Thus buoyancy effects should be considered when developing correlations for these types of flow.


1992 ◽  
Vol 114 (3) ◽  
pp. 607-613 ◽  
Author(s):  
B. R. Hollworth ◽  
M. Durbin

Experiments were conducted to determine the performance of a system of low-velocity air jets used to cool a simulated electronics package. The test model consisted of a uniform array of rectangular elements mounted to a circuit board. Each element was cooled by a cluster of four jets, and the spent fluid was vented at one end of the channel formed between the circuit board and the plate from which the jets were discharged. Reported are measurements of system pressure drop and convective heat transfer coefficients for elements at various sites within the array. Results indicate that (for the geometry tested) the largest portion of the total pressure drop occurs across the jet orifices. Further, the crossflow of spent air appears to enhance heat transfer for those elements near the exit end of the channel.


Sign in / Sign up

Export Citation Format

Share Document