Hydrodynamics of Two-Phase Flow Across Horizontal In-line and Staggered Rod Bundles

1992 ◽  
Vol 114 (3) ◽  
pp. 450-456 ◽  
Author(s):  
R. Dowlati ◽  
A. M. C. Chan ◽  
M. Kawaji

The void fraction and friction pressure drop measurements have been made for vertical two-phase flow of air-water across staggered and in-line rod bundles with different pitch-to-diameter ratios. All void fraction data showed a strong mass velocity effect and were significantly less than the values predicted by a homogeneous flow model, but were well correlated using the dimensionless gas velocity, jg*. The two-phase friction multiplier data could be well correlated with the Martinelli parameter for G > 200 kg/m2s. The correlations developed for void fraction and two-phase friction multiplier were successfully tested in predicting the total pressure drop in boiling R-113 experiments.

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


1998 ◽  
Vol 120 (1) ◽  
pp. 140-145 ◽  
Author(s):  
G. P. Xu ◽  
K. W. Tou ◽  
C. P. Tso

Void fraction and friction pressure drop measurements were made for an adiabatic, horizontal two-phase flow of air-water, air-oil across a horizontal in-line, 5 × 20 tube bundle with pitch-to-diameter ratio, P/D, of 1.28. For both air-water and air-oil flow, the experimental results showed that the average void fraction were less than the values predicted by a homogenous flow model, but were well correlated with the Martinelli parameter Xtt and liquid-only Froude number FrLO. The two-phase friction multiplier data exhibited an effect of flow pattern and mass velocity, and they could be well-correlated with the Martinelli parameter.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
Normah Mohd-Ghazali ◽  
Nasruddin Nasruddin ◽  
Raldi Koestoer

Two-phase flow boiling pressure drop experiment was conducted to observe its characteristics and to develop a new correlation of void fraction based on the separated model. Investigation is completed on the natural refrigerant R-290 (propane) in a horizontal circular tube with a 7.6 mm inner diameter under experimental conditions of 3.7 to 9.6 °C saturation temperature, 10 to 25 kW/m2 heat flux, and 185 to 445 kg/m2s mass flux. The present experimental data was used to obtain the calculated void fraction which then was compared to the predicted void fraction with 31 existing correlations. A new void fraction correlation for predicting two-phase flow boiling pressure drop, as a function of Reynolds numbers, was proposed. The measured pressure drop was compared to the predicted pressure drop with some existing pressure drop models that use the newly developed void fraction model. The homogeneous model of void fraction showed the best prediction with 2% deviation


Author(s):  
Quanyao Ren ◽  
Liangming Pan ◽  
Wenxiong Zhou ◽  
Tingpu Ye ◽  
Hang Liu ◽  
...  

In order to simulate the transfer of mass, momentum and energy in the gas-liquid two-phase flow system, tremendous work focused on the phenomenon, mechanisms and models for two-phase flow in different channels, such as circular pipe, rectangular channel, rod bundle and annulus. Drift-flux model is one of the widely used models for its simplicity and good accuracy, especially for the reactor safety analysis codes (RELAP5 and TRAC et al.) and sub-channel analysis code (COBRA, SILFEED and NASCA et al.). Most of the adopted drift-flux models in these codes were developed based on the void fraction measured in pipe and annulus, which were different with the actual nuclear reactor. Although some drift-flux models were developed for rod bundles, they were based on the void fraction on the whole cross-section not in subchannel in rod bundles due to the lack of effective measuring methods. A novel sub-channel impedance void meter (SCIVM) has been developed to measure the void fraction in sub-channel of 5 × 5 rod bundles, which is adopted to evaluate these existing drift-flux models for rod bundles. By comparison, the values of drift-flux parameters have large differences among different correlations, which are suggested to be reconsidered. Based on the experimental data and physical laws, Lellouche-Zolotar and Chexal-Lellouche correlations show a better performance for drift velocity. If the predicting error of void fraction is the only concerned parameter, Chen-Liu, Ishizuka-Inoue and Chexal-Lellouche correlations are recommended for averaged relative error less than 30%. More experiments are suggested to focus on the distribution parameter and drift velocity through their definition.


Author(s):  
I˙smail Teke ◽  
O¨zden Ag˘ra ◽  
Hakan Demir ◽  
S¸. O¨zgu¨r Atayılmaz

In this study, the several well known two-phase viscosity models were used for predicting two-phase flow pressure drop in a smooth tube using Computational Fluid Dynamics (CFD) software at homogenous flow conditions. Pressure drop for two different mass flux values (300 and 650 kg/m2s) for R134a with a saturation temperature of 45 °C in a smooth tube has been modeled according to the homogenous flow model and the results have been compared with the analytical formulas and experimental data from the literature. Three different average viscosity correlations were used. It is seen that the numerical results are in a good agreement with the homogenous flow model and fall in ± 30% band. Also, the results derived from the average viscosity expression are in a good agreement with the results calculated using separated two-phase flow correlations. In addition to this, Artificial Neural Networks (ANNs) were employed for predicting the pressure drop in a horizontal smooth pipe. The trained network gives the best values over the correlations with less than 1% mean relative error.


Sign in / Sign up

Export Citation Format

Share Document