Heat Transfer and Turbulent Flow Characteristics of Isolated Three-Dimensional Protrusions in Channels

1991 ◽  
Vol 113 (3) ◽  
pp. 597-603 ◽  
Author(s):  
P. T. Roeller ◽  
J. Stevens ◽  
B. W. Webb

The flow structure and average heat transfer characteristics of single, isolated three-dimensional protrusions in a flow channel have been investigated experimentally. This configuration has relevance in the electronics industry. The study was designed to identify the influence of the three-dimensional flow around a heated protrusion on its average heat transfer. Heated protrusions varying in width between 0.12 and 1.0 channel widths for a fixed protrusion height and streamwise length were studied in the channel Reynolds number range 500≤Re≤10,000. The channel wall spacing was also varied parametrically between 1.25 and 2.5 streamwise protrusion lengths. The study included both average heat transfer measurements, and detailed local velocity and turbulent flow structure measurements made using laser-Doppler velocimetry. The experimental results show that the Nusselt number increases with both decreasing channel wall spacing and decreasing protrusion width. The increase in heat transfer with decreasing wall spacing is explained by the accelerated flow due to the protrusion-obstructed channel. Increasing Nusselt number with decreasing protrusion width is a result of increased three-dimensional flow and associated turbulent mixing. Both of these flow-related phenomena are illustrated with local mean velocity and turbulence intensity measurements. The presence of recirculation zones both upstream and downstream of the module is revealed. The flow acceleration around the heated protrusions, and three dimensionality of the flow and heat transfer are competing mechanisms; the higher heat transfer due to flow acceleration around the protrusions for larger protrusions goes counter to the trend for higher heat transfer due to increased three-dimensional flow and transport for smaller protrusions. A Nusselt number correlation is developed as a function of channel Reynolds number and protrusion and channel geometric parameters, which describes the tradeoffs discussed.

Author(s):  
G Croce ◽  
P D'Agaro

A numerical analysis of three-dimensional flow structures in a nominally two-dimensional fin geometry is presented. A sinusoidal louvred fin is considered. The heat transfer enhancement is achieved by combining boundary layer interruptions and vortical structures induced by the corrugation of the base fin. The fin shape and pitch, as well as flow conditions, are representative of typical automotive application. A wide ranging values of Reynolds number are investigated, spanning the steady laminar regime, the unsteady periodic laminar flow, and the chaotic transitional flow. Two- and three-dimensional numerical solutions are compared, looking for the onset of three-dimensional instabilities. At low values of the Reynolds number, up to the steady-unsteady flow transition, the flow is two-dimensional. As soon as unsteady oscillation appears, the simulation results show three-dimensional flow structures, even in a nominally two-dimensional geometry. The typical longitudinal vortex size is evaluated. In the periodic unsteady regime, fully three-dimensional computations yield time-averaged Nusselt number and friction factor significantly higher than those predicted by two-dimensional models. Furthermore, these flow structures induce an early transition from the periodic regime to the chaotic regime. In the chaotic regime, however, the heat transfer enhancement due to the three-dimensional flow structures is much lower.


1998 ◽  
Vol 120 (3) ◽  
pp. 717-723 ◽  
Author(s):  
M. Greiner ◽  
G. J. Spencer ◽  
P. F. Fischer

Direct numerical simulations of three-dimensional flow and augmented convective heat transfer in a transversely grooved channel are presented for the Reynolds number range 140 < Re < 2000. These calculations employ the spectral element technique. Multiple flow transitions are documented as the Reynolds number increases, from steady two-dimensional flow through broad-banded unsteady three-dimensional mixing. Three-dimensional simulations correctly predict the Reynolds-number-independent friction factor behavior of this flow and quantify its heat transfer to within 16 percent of measured values. Two-dimensional simulations, however, incorrectly predict laminar-like friction factor and heat transfer behaviors.


Sign in / Sign up

Export Citation Format

Share Document