Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains

1991 ◽  
Vol 113 (1) ◽  
pp. 10-16 ◽  
Author(s):  
D. G. Olson ◽  
A. G. Erdman ◽  
D. R. Riley

Graph theory has been demonstrated by many researchers to be useful during the conceptual phase of mechanism design. For the particular class of mechanisms known as planetary gear trains, the graph representation has been used primarily for “topological synthesis,” the enumeration of kinematic chains satisfying the requirements for planetary gear trains. The subsequent “topological analysis” steps resulting in the specification of ground, input, and output links, have received very little attention in the literature, perhaps because the conventional graph representation for topological analysis, and utilizes a new graph representation which enables these steps to be performed in a straightforward manner. It is shown that among the thirteen distinct displacement graphs representing planetary geared kinematic chains with five links and one degree-of-freedom, only four distinct planetary gear trains result after assigning the ground, input, and output links subject to meaningful topological requirements.

2002 ◽  
Vol 124 (4) ◽  
pp. 662-675 ◽  
Author(s):  
V. V. N. R. Prasad Raju Pathapati ◽  
A. C. Rao

The most important step in the structural synthesis of planetary gear trains (PGTs) requires the identification of isomorphism (rotational as well as displacement) between the graphs which represent the kinematic structure of planetary gear train. Previously used methods for identifying graph isomorphism yielded incorrect results. Literature review in this area shows there is inconsistency in results from six link, one degree-of-freedom onwards. The purpose of this paper is to present an efficient methodology through the use of Loop concept and Hamming number concept to detect displacement and rotational isomorphism in PGTs in an unambiguous way. New invariants for rotational graphs and displacement graphs called geared chain hamming strings and geared chain loop hamming strings are developed respectively to identify rotational and displacement isomorphism. This paper also presents a procedure to redraw conventional graph representation that not only clarifies the kinematic structure of a PGT but also averts the problem of pseudo isomorphism. Finally a thorough analysis of existing methods is carried out using the proposed technique and the results in the category of six links one degree-of-freedom are established and an Atlas comprises of graph representations in conventional form as well as in new form is presented.


2006 ◽  
Vol 129 (9) ◽  
pp. 960-968 ◽  
Author(s):  
David R. Salgado ◽  
J. M. del Castillo

The objective of the present work is to determine the conditions that have to be satisfied for a planetary gear train of one degree of freedom to be self-locking. All planetary gear trains of up to six members are considered. As a result, we show the constructional solutions of planetary gear trains exhibiting self-locking. Unlike other studies, the self-locking conditions are obtained systematically from the analytical expression for the product of the efficiency of a given train by the efficiency of the train resulting from interchanging its input and output axes. Finally, a proof is given of an approximate relationship between these two efficiencies.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Vinjamuri Venkata Kamesh ◽  
Kuchibhotla Mallikarjuna Rao ◽  
Annambhotla Balaji Srinivasa Rao

Graph theory is a powerful tool in structural synthesis and analysis of planetary gear trains (PGTs). In this paper, a new algorithm has been developed for detecting degenerate structure in planetary gear trains. The proposed algorithm is based on the concept of fundamental circuits' rotation graphs. Detection of degeneracy is entirely based on finding one key element. The key element or link that makes planetary gear train into two groups is found in this work. The main advantage of the proposed method lies in the drastic reduction in the required combinatorial analysis compared to other methods available.


2013 ◽  
Vol 568 ◽  
pp. 169-175 ◽  
Author(s):  
Ya Feng He ◽  
You Ming Wang

The method research of planetary gear trains (PGTs) by applying topological theory is very significance in searching for innovative planetary trains. A new graph representation and stratification standard are introduced firstly. Then three topological graphs of basic structure of PGTs are established as the basis of synthesis theory. Next several kinds of planetary trains with small teeth difference and method of isomorphic determination are presented, thus built up the procedure of PGTs by graphs and example. Finally a new system of classification and synthesis for PGTs is put forward according to the feature of loops in topological theory.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. V. D. Rao ◽  
A. C. Rao

New planetary gear trains (PGTs) are generated using graph theory. A geared kinematic chain is converted to a graph and a graph in turn is algebraically represented by a vertex-vertex adjacency matrix. Checking for isomorphism needs to be an integral part of the enumeration process of PGTs. Hamming matrix is written from the adjacency matrix, using a set of rules, which is adequate to detect isomorphism in PGTs. The present work presents the twin objectives of testing for isomorphism and compactness using the Hamming matrices and moment matrices.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Liang Sun ◽  
Zhizheng Ye ◽  
Rongjiang Cui ◽  
Wenjian Yang ◽  
Chuanyu Wu

Abstract An important step in the structural synthesis of kinematic chains (KCs) or mechanisms is the detection of isomorphic structures. Although many detection methods have been proposed, most of them require complex computations and have poor versatility. In this study, a simple detection method is proposed based on a compound topological invariant (CTI), which comprises the fourth power of adjacency matrix and eigenvalues. Besides two complex 15- and 28-link planar simple-joint KCs (PSKCs), the method is tested on the complete atlas of contracted graphs with up to six independent loops, PSKCs with up to 13 links, 8-link 1-degree-of-freedom (DOF) planar multiple-joint KCs (PMKCs), and 6-link 1-DOF planetary gear trains (PGTs). All the results are in agreement with the reported results in the literature. Our method possesses good versatility and has been verified as being reliable and efficient.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Wenjian Yang ◽  
Huafeng Ding ◽  
Bin Zi ◽  
Dan Zhang

Planetary gear trains (PGTs) are widely used in machinery to transmit angular velocity ratios or torque ratios. The graph theory has been proved to be an effective tool to synthesize and analyze PGTs. This paper aims to propose a new graph model, which has some merits relative to the existing ones, to represent the structure of PGTs. First, the rotation graph and canonical rotation graph of PGTs are defined. Then, by considering the edge levels in the rotation graph, the displacement graph and canonical displacement graph are defined. Each displacement graph corresponds to a PGT having the specified functional characteristics. The synthesis of five-link one degree-of-freedom (1DOF) PGTs is used as an example to interpret and demonstrate the applicability of the present graph representation in the synthesis process. The present graph representation can completely avoid the generation of pseudo-isomorphic graphs and can be used in the computer-aided synthesis and analysis of PGTs.


Author(s):  
Rongjiang Cui ◽  
Zhizheng Ye ◽  
Liang Sun ◽  
Chuanyu Wu

Isomorphism identification is an essential step in mechanism configuration synthesis. Although various detection methods have been proposed, some of them can only effectively identify kinematic chains (KCs) within 10 links or complex programs that are needed to identify multilink KCs. In this study, a new isomorphism identification method is proposed based on the distance concept of graphs and the graph theory definition of isomorphism. In addition to two complex 21- and 28-link planar simple-joint KCs (PSKCs), the proposed algorithm is tested on the complete atlas of 8-link 1-DOF, 9-link 2-DOF, 10-link 1-DOF, 12-link 1-DOF, and 13-link 2-DOF PSKCs. The algorithm is also tested on 6-link 1-DOF and 7-link 1-DOF planetary gear trains (PGTs) to detect isomorphism. All results are in agreement with those of the existing literature. The method is fully automated via a computer program and has been verified to be reliable and efficient.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Wenjian Yang ◽  
Huafeng Ding

The structural synthesis of planetary gear trains (PGTs) is helpful for innovating transmission systems in machinery. A great deal of research has been devoted to the synthesis of one-degree-of-freedom (1-DOF) PGTs over the past half century. However, most synthesis methods are limited to PGTs with no more than eight links. Moreover, the synthesis results are not consistent with each other. Until now, the inconsistency of synthesis results is still unresolved and exact synthesis results remain elusive. This paper presents a systematic and fully automatic method based on parent graphs to synthesize 1-DOF PGTs. The complete database of rotation graphs (r-graphs) and displacement graphs (d-graphs) of 1-DOF PGTs with up to nine links is established for the first time. All possible reasons for the contradictory synthesis results in the literature are analyzed and the controversy in the existing synthesis results which has lasted for nearly half a century is completely resolved. The exact results of the 6-, 7-, and 8-link r-graphs are confirmed to be 27, 152, and 1070, respectively. The exact results of the 6-, 7-, and 8-link d-graphs are confirmed to be 81, 647, and 6360, respectively. Additionally, the new results of 8654 r-graphs and 71,837 d-graphs of 9-link PGTs are provided for the first time.


Sign in / Sign up

Export Citation Format

Share Document