Computerized Simulation of Meshing and Bearing Contact for Single-Enveloping Worm-Gear Drives

1992 ◽  
Vol 114 (2) ◽  
pp. 313-316 ◽  
Author(s):  
F. L. Litvin ◽  
V. Kin

Single-enveloping worm-gear drives are considered. A general approach to computerized simulation of meshing for such misaligned drives is proposed. The proposed algorithm makes it possible to determine the transfer point where ideal line contact turns into real point contact and the transmission errors and the shift of bearing contact caused by the misalignment. Numerical examples for involute worm-gear drives are presented.

Author(s):  
I. H. Seol ◽  
Faydor L. Litvin

Abstract The worm and worm-gear tooth surfaces of existing design of Flender gear drive are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause the shift of the bearing contact and transmission errors. The authors propose : (1) Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design (2) Methods of modification of geometry of worm-gear drives that enable to localize and stabilize the bearing contact and reduce the sensitivity of drives to misalignment (3) Methods for computerized simulation of meshing and contact of worm-gear drives with modified geometry The proposed approach was applied as well for the involute (David Brown) and Klingelnberg type of worm-gear drives. Numerical examples that illustrate the developed theory are provided.


1996 ◽  
Vol 118 (4) ◽  
pp. 551-555 ◽  
Author(s):  
I. H. Seol ◽  
F. L. Litvin

The worm and worm-gear tooth surfaces of existing worm-gear drive designs are in line contact at every instant and the gear drive is very sensitive to misalignment. Errors of alignment cause shifting of the bearing contact and transmission errors. Methods for computerized simulation of meshing and contact of misaligned worm-gear drives of existing design are proposed. Also, modification of worm-gear drive geometry that provides a localized and stable bearing contact with reduced sensitivity to misalignment is described. Methods for computerized simulation of meshing and contact of worm-gear drives with the existing and modified geometry are represented. Numerical examples that illustrate the developed theory are provided. The proposed approach has been applied for modification of involute, Klingelnberg and Flender type worm-gear drives.


1992 ◽  
Vol 114 (4) ◽  
pp. 642-647 ◽  
Author(s):  
F. L. Litvin ◽  
Y. Zhang ◽  
J.-C. Wang ◽  
R. B. Bossler ◽  
Y.-J. D. Chen

The authors have developed the analytical geometry of face-gear drives, proposed the method for localization of bearing contact, developed computerized simulation of meshing and bearing contact, investigated the influence of gear misalignment on the shift of bearing contact and transmission errors. Application for design is discussed. The obtained results are illustrated with numerical examples.


1999 ◽  
Vol 121 (4) ◽  
pp. 573-578 ◽  
Author(s):  
M. De Donno ◽  
F. L. Litvin

The authors propose a new approach for design and generation of low-noise, stable bearing contact gear drive with cylindrical worm. The approach is based on application of an oversized hob and varied plunging of worm generating tool. It is discovered that without plunging positive transmission errors occur (that are unacceptable for favorable conditions of force transmission). A predesigned parabolic function is provided that is able to absorb transmission errors caused by misalignment and reduce the level of vibrations, especially in the case of application of multi-thread worms. The developed approach is tested by computerized simulation of meshing and contact by the developed computer program. The investigation is accomplished for a worm-gear drive with the Klingelnberg type of the worm that is ground by a circular cone, but the proposed approach may be applied for other types of worm gear drives with cylindrical worms.


2000 ◽  
Vol 122 (2) ◽  
pp. 201-206 ◽  
Author(s):  
I. H. Seol

The design and simulation of meshing of a single enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction and two branches of contact path. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The author’s approach for localization of bearing contact is based on the proper mismatch of the surfaces of the hob and drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and the determination of the transmission errors and the contact ratio. The developed approach has been applied for K type of single-enveloping worm-gear drives and the developed theory is illustrated with a numerical example. [S1050-0472(00)00502-X]


Author(s):  
F. L. Litvin ◽  
A Fuentes ◽  
A Demenego ◽  
D Vecchiato ◽  
Q Fan

Design, generation and simulation of the meshing and contact of gear drives with favourable bearing contact and reduced noise are considered. The proposed approach is based on replacement of the instantaneous line of contact of tooth surfaces by point contact and on application of a predesigned parabolic function of transmission errors that is able to absorb linear discontinuous functions of transmission errors caused by misalignment. Basic algorithms for analysis and synthesis of gear drives are presented. The developed theory is applied for design and generation of the following gear drives with modified geometry: (a) spur and helical gears, (b) a new version of Novikov-Wildhaber (N-W) helical gears, (c) asymmetric face gear drives with a spur pinion, (d) formate-cut spiral bevel gears. Generation of the tooth surface of a worm gear is presented as the formation of a two-branch envelope. The discussed topics are illustrated with examples.


2006 ◽  
Vol 129 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Faydor L. Litvin ◽  
Kenji Yukishima ◽  
Kenichi Hayasaka ◽  
Ignacio Gonzalez-Perez ◽  
Alfonso Fuentes

The computerized design, generation, and tooth contact analysis of a Klingelnberg-type cylindrical worm gear drive is considered wherein localization of contact is obtained by application of an oversized hob and mismatch geometries of hob and worm of the drive. A computerized approach for the determination of contacting surfaces and the investigation of their meshing and contact by tooth contact analysis is presented. The developed theory results in an improvement of bearing contact and reduction of sensitivity to misalignment. The theory is illustrated with numerical examples and may be applied for other types of cylindrical worm gear drives.


1996 ◽  
Vol 118 (4) ◽  
pp. 544-550 ◽  
Author(s):  
F. L. Litvin ◽  
I. H. Seol ◽  
D. Kim ◽  
J. Lu ◽  
A. G. Wang ◽  
...  

A methodology is proposed for the modification of gear tooth surfaces that reduces the impact of gear drive misalignment, the shift of the bearing contact (accompanied in some cases with edge contact), and the occurrence of discontinuous functions of transmission errors. The proposed approach is tested by computerized simulation of meshing and contact for unloaded and loaded gear drives. Applications of geometry modifications to the design of spur and helical involute gears, double-circular helical gears, face-gear drives, face-milled spiral bevel gears with constant tooth height and worm-gear drives are represented.


Author(s):  
Faydor L. Litvin ◽  
I. H. Seol ◽  
K. Kim

Abstract The design and simulation of meshing of a single-enveloping worm-gear drive with a localized bearing contact is considered. The bearing contact has a longitudinal direction. The purpose of localization is to reduce the sensitivity of the worm-gear drive to misalignment. The authors’ approach for localization of bearing contact is based on the proper mismatch of the sufaces of the hob and the drive worm. The developed computer program allows the investigation of the influence of misalignment on the shift of the bearing contact and allows determination of the transmission errors. The developed approach is applicable for all types of single-enveloping worm-gear drives. The developed theory is illustrated with a numerical example.


Author(s):  
C-K Chen ◽  
C-Y Wang

A mathematical model of a stepped double circular-arc helical tooth profile with two centre offsets is developed. The conditions of gear meshing that reflect manufacturing and assembly errors are simulated. The locations of bearing contact and the contact path pattern of mating tooth surfaces are determined by tooth contact analysis (TCA). By applying the proposed mathematical model and TCA, single error impact can be determined. To compensate for offset and angular misalignment, the authors propose an adjustable bearing whereby transmission errors can be minimized. The investigation is illustrated with several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document