Operational Risk Evaluation of an Ice Feature Impact

1990 ◽  
Vol 112 (1) ◽  
pp. 96-101
Author(s):  
A. B. Dunwoody

The risk of impact by a particular ice feature in the vicinity of an offshore structure or stationary vessel is of concern during operations. A general method is presented for calculating the risk of an impact in terms of the joint probability distribution of the forecast positions and velocities of the ice feature. A simple stochastic model of the motion of an ice feature is introduced for which the joint probability distribution of ice feature position and velocity can be determined as a function of time. The risk of an impact is presented for this model of the motion of an ice feature. Predictions of the distributions of the time until impact and the drift speed upon impact are also presented and discussed. Predictions are compared against results of a Monte Carlo simulation.

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. O9-O19 ◽  
Author(s):  
Heidi Kjønsberg ◽  
Ragnar Hauge ◽  
Odd Kolbjørnsen ◽  
Arild Buland

Predrill assessment of the probability that a potential drilling spot holds hydrocarbons (HC) is of vital importance to any oil company. Of equally great value is the assessment of hydrocarbon volumes and distributions. We have developed a methodology that uses seismic data to find the probability that a vertical earth profile contains hydrocarbons and the probability distribution of hydrocarbon volumes. The method combines linearized amplitude variation with offset (AVO) inversion and stochastic rock models and predicts the joint probability distribution of the combined lithology and fluid for the entire profile. We use a Bayesian approach and find the solution of the inverse problem by Markov chain Monte Carlo simulation. The stochastic simulation benefits from a new and tailored simulation algorithm. The computational cost of finding the full joint probability distribution is relatively high and implies that the method is best suited to the investigation of a few potential drilling spots. We applied the method to a case with well control and to two locations in a prospect: one in the center and one at the outskirts. At the well location, we identify the two reservoir zones and obtain volumes that fit the log data. At the prospect, we obtain significant increases in HC probability and volume in the center, whereas there are decreases at the outskirts. Despite the large noise components in the data, the risked volumes in the center changed by a factor of three. We have designed an algorithm for computing the joint distribution of lithology, fluid, and elastic parameters for a full vertical profile. As opposed to what can be done with pointwise approaches, this allows us to calculate success probability and HC volumes.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Huilin Huang

We consider an inhomogeneous growing network with two types of vertices. The degree sequences of two different types of vertices are investigated, respectively. We not only prove that the asymptotical degree distribution of typesfor this process is power law with exponent2+1+δqs+β1-qs/αqs, but also give the strong law of large numbers for degree sequences of two different types of vertices by using a different method instead of Azuma’s inequality. Then we determine asymptotically the joint probability distribution of degree for pairs of adjacent vertices with the same type and with different types, respectively.


Sign in / Sign up

Export Citation Format

Share Document