An Approximate THD Theory for Journal Bearings

1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.

Author(s):  
J. L. Nikolajsen ◽  
D. Dong ◽  
M. J. Goodwin

Preliminary measurements have been conducted to determine the effect of oil aeration on journal bearing performance. Oil aeration was observed to reduce the bearing load capacity and to increase the bearing stiffness. Also, the bearing damping capacity was improved significantly by oil aeration.


1966 ◽  
Vol 88 (1) ◽  
pp. 236-245 ◽  
Author(s):  
W. Unterberg ◽  
J. S. Ausman

This is a theoretical investigation into the behavior of self-acting long journal bearings lubricated with vapor which may partially condense in the high-pressure region of a loaded bearing. Thermohydrodynamic considerations indicate that the lubricant temperature remains constant throughout the bearing. When the maximum pressure in the bearing reaches the saturation vapor pressure at the constant temperature, a further increase in bearing load then causes partial condensation instead of a rise in maximum pressure. In the partial condensation regime, the fluid annulus is made up of (a) a single-phase vapor region with variable pressure, and (b) a two-phase liquid-vapor region at constant saturation pressure. The regional interface locations and the bearing pressure distribution are obtained by “linearized ph” methods under the restrictions or boundary conditions of saturation pressure at the interfaces and constant lubricant mass content. It is shown that complete condensation cannot occur, so that the maximum pressure in the condensing vapor-lubricated bearing is limited to the saturation pressure. For this reason, the resulting load capacity always lies below that of a corresponding bearing lubricated with a noncondensing gas.


1959 ◽  
Vol 81 (2) ◽  
pp. 245-252 ◽  
Author(s):  
F. W. Ocvirk ◽  
G. B. DuBois

A method of relating surface finish to minimum oil-film thickness and the corresponding load capacity of plain journal bearings is presented with supporting experimental data. The effect of clearance on load capacity and friction are shown on graphs indicating an optimum bearing clearance.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1967 ◽  
Vol 89 (2) ◽  
pp. 203-210 ◽  
Author(s):  
R. R. Donaldson

Reynolds’ equation for a full finite journal bearing lubricated by an incompressible fluid is solved by separation of variables to yield a general series solution. A resulting Hill equation is solved by Fourier series methods, and accurate eigenvalues and eigenvectors are calculated with a digital computer. The finite Sommerfeld problem is solved as an example, and precise values for the bearing load capacity are presented. Comparisons are made with the methods and numerical results of other authors.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hui Zhang ◽  
Mahshid Hafezi ◽  
Guangneng Dong ◽  
Yang Liu

This paper aims to improve the tribological performance of journal bearings by optimizing the coverage area of circular microtextures in divergent region of the sleeve. A numerical model is proposed to calculate the friction coefficient and bearing load of textured journal bearings. The surface of the sleeve is divided into rectangular squares. Textures that located at the center of rectangular grids are assumed to be present or absent, marked as 1 and 0, respectively. Afterward, different texture coverage area arrangements are evolved and selected based on the genetic algorithm (GA). The area of semi-elliptical shape is obtained as the novel and preferable textured coverage area design for journal bearings. Influences of width and eccentricity ratio are discussed, which confirm the semimajor and semiminor axes of the semi-elliptical shape of texture coverage area equal to one-third of the circumferential length and half of the width of the journal bearing, respectively.


1980 ◽  
Author(s):  
Arnold O. Dehart ◽  
Richard C. Rosenberg ◽  
Robert F. Hill ◽  
Eric W. Schneider

1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


Sign in / Sign up

Export Citation Format

Share Document