The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines

1991 ◽  
Vol 113 (4) ◽  
pp. 509-536 ◽  
Author(s):  
Robert Edward Mayle

A critical study of laminar-turbulent transition phenomena and their role in aerodynamics and heat transfer in modern and future gas turbine engines is presented. In order to develop a coherent view of the subject, a current look at transition phenomena from both a theoretical and experimental standpoint are provided and a comprehensive state-of-the-art account of transitional phenomena in the engine’s throughflow components given. The impact of transitional flow on engine design is discussed and suggestions for future research and developmental work provided.

Author(s):  
Robert Edward Mayle

A critical study of laminar-turbulent transition phenomena and its role in aerodynamics and heat transfer in modern and future gas turbine engines is presented. In order to develop a coherent view of the subject, a current look at transition phenomena from both a theoretical and experimental standpoint are provided and a comprehensive state-of-the-art account of transitional phenomena in the engine’s throughflow components given. The impact of transitional flow on engine design is discussed and suggestions for future research and developmental work provided.


1993 ◽  
Vol 115 (2) ◽  
pp. 207-216 ◽  
Author(s):  
G. J. Walker

An extended discussion of Mayle’s (1991) critical study of transition phenomena in gas turbine engines is presented. Attention is focused on transition in decelerating flow regions, which are the major sources of loss production for axial turbomachine blades. The following points are examined in detail: (a) the physics of transition and its implications for the correlation of various transition phenomena; (b) the relative importance of pressure gradient and free-stream turbulence in controlling transition; (c) the influence of pressure gradient on periodic-unsteady transition; (d) the correlation of transition length under conditions of arbitrary pressure gradient and free-stream turbulence level; and (e) transition behavior in laminar separation bubbles. The discussion examines various differences in philosophy concerning the above phenomena and makes further suggestions for transition research, which may assist in resolving the issues raised.


Author(s):  
G. J. Walker

An extended discussion of Mayle’s (1991) critical study of transition phenomena in gas turbine engines is presented. Attention is focussed on transition in decelerating flow regions which are the major sources of loss production for axial turbomachine blades. The following points are examined in detail: (a) the physics of transition and its implications for the correlation of various transition phenomena; (b) the relative importance of pressure gradient and free-stream turbulence in controlling transition; (c) the influence of pressure gradient on periodic-unsteady transition; (d) the correlation of transition length under conditions of arbitrary pressure gradient and free-stream turbulence level; and (e) transition behavior in laminar separation bubbles. The discussion examines various differences in philosophy concerning the above phenomena and corrects some areas of misinterpretation in the subject review paper. It concludes with further suggestions for transition research which may assist in resolving the issues raised.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2107 ◽  
Author(s):  
Sergey Borovik ◽  
Yuriy Sekisov

The creation and exploitation of gas turbine engines (GTE) often involve two mutually exclusive tasks related to ensuring the highest reliability while achieving a good economic and environmental performance of the power plant. The value of the radial clearance between the blade tips of the compressor or turbine and the stator is a parameter that has a significant impact on the efficiency and safety of the GTE. However, the radial displacements that form tip clearances are only one of the components of the displacements made by GTE elements due to the action of power loads and thermal deformations during engines’ operation. The impact of loads in conjunction with natural aging is also the reason for the wear of the GTE’s structural elements (for example, bearing assemblies) and the loss of their mechanical strength. The article provides an overview of the methods and tools for monitoring the dangerous states of the GTE (blade tips clearances, impellers and shafts displacements, debris detecting in lubrication system) based on the single-coil eddy current sensor, which remains operational at the temperatures above 1200 °C. The examples of practical application of the systems with such sensors in bench tests of the GTE are given.


Author(s):  
J. A. Saintsbury ◽  
P. Sampath

The impact of potential aviation gas turbine fuels available in the near to midterm, is reviewed with particular reference to the small aviation gas turbine engine. The future course of gas turbine combustion R&D, and the probable need for compromise in fuels and engine technology, is also discussed. Operating experience to date on Pratt & Whitney Aircraft of Canada PT6 engines, with fuels not currently considered of aviation quality, is reported.


1985 ◽  
Vol 107 (1) ◽  
pp. 205-211 ◽  
Author(s):  
J. H. Griffin ◽  
A. Sinha

This paper summarizes the results of an investigation to establish the impact of mistuning on the performance and design of blade-to-blade friction dampers of the type used to control the resonant response of turbine blades in gas turbine engines. In addition, it discusses the importance of friction slip force variations on the dynamic response of shrouded fan blades.


Sign in / Sign up

Export Citation Format

Share Document