scholarly journals Asymptotic Description of Maximum Mistuning Amplification of Bladed Disk Forced Response

Author(s):  
Carlos Martel ◽  
Roque Corral

The problem of determining the maximum forced response vibration amplification that can be produced just by the addition of a small mistuning to a perfectly cyclical bladed disk still remains not completely clear. In this paper we apply a recently introduced perturbation methodology, the asymptotic mistuning model (AMM), to determine which are the key ingredients of this amplification process and to evaluate the maximum mistuning amplification factor that a given modal family with a particular distribution of tuned frequencies can exhibit. A more accurate upper bound for the maximum forced response amplification of a mistuned bladed disk is obtained from this description, and the results of the AMM are validated numerically using a simple mass-spring model.

Author(s):  
Carlos Martel ◽  
Roque Corral

The problem of determining the maximum forced response vibration amplification that can be produced just by the addition of a small mistuning to a perfectly cyclical bladed disk still remains not completely clear. In this paper we apply a recently introduced perturbation methodology, the Asymptotic Mistuning Model (AMM), to determine which are the key ingredients of this amplification process, and to evaluate the maximum mistuning amplification factor that a given modal family with a particular distribution of tuned frequencies can exhibit. A more accurate upper bound for the maximum forced response amplification of a mistuned bladed disk is obtained from this description, and the results of the AMM are validated numerically using a simple mass-spring model.


2004 ◽  
Author(s):  
Shaun Richmond

Vibration of attached components such as running boards, hand grabs, brake components, etc. has become a serious problem. This paper sets out a simple analysis method for ensuring the survival of these components. A simple mass spring model is used to develop a transfer function into the car body. The frequency components of a wheel flat and 39/33 foot jointed track are then established and the excitation amplitudes for components attached to the car body calculated. The response of these components at their natural frequency is then used to calculate their resulting stress levels. Simple methods for performing this analysis are described


Author(s):  
Oualid Khemiri ◽  
Carlos Martel ◽  
Roque Corral

The Asymptotic Mistuning Model (AMM) is a recently introduced simplified method for the analysis of mistuning effects in the vibration characteristics of bladed disks. It is derived directly from the full mistuned bladed disk using an asymptotic expansion that exploits the smallness of the mistuning and the damping. The results from the AMM have been previously successfully verified using a simple 1-D mass-spring model. In this paper we validate the accuracy of AMM for the prediction of the effect of mistuning in realistic configurations. To this end, we perform a quantitative comparison between the AMM results and those from a detailed finite element method (FEM) numerical simulation of a complete mistuned bladed disk, for several mistuning patterns and forcing conditions. We also emphasize and comment the useful information provided by the AMM about the essential mechanisms involved in the mistuning effects on the vibration of cyclic structures.


Author(s):  
Nicolas Mouazé ◽  
Lionel Birglen

In the literature, many models of compliant fingers grasping rigid objects have been extensively discussed. However, when the objects are themselves deformable, as in many practical cases, the effect of compliant underactuated fingers onto these soft objects is generally not addressed due to the complexity of the model required for accurate results. This paper aims at addressing this issue by proposing to simulate deformations using a simple mass-spring model. This model discretizes the object similarly to how a pseudo-rigid body technique usually approximates the compliant finger. Comparisons between simulations using the proposed model and finite element analyses demonstrate that for a significant range of deformations our approach offers an efficient and accurate approximation while less computationally intensive.


2021 ◽  
Vol 16 ◽  
pp. 155892502110125
Author(s):  
Sha Sha ◽  
Anqi Geng ◽  
Yuqin Gao ◽  
Bin Li ◽  
Xuewei Jiang ◽  
...  

There are different kinds of geometrical models and physical models used to simulate weft knitted fabrics nowadays, such as loop models based on Pierce, piecewise function, spline curve, mass-spring model, and finite element analyses (FEA). Weft knitting simulation technology, including modeling and yarn reality, has been widely adopted in fabric structure designing for the manufacturer. The technology has great potentials in both industries and dynamic virtual display. The present article is aimed to review the current development of 3-D simulation technique for weft knitted fabrics.


Author(s):  
Salina Sulaiman ◽  
Tan Sing Yee ◽  
Abdullah Bade

Physically based models assimilate organ-specific material properties, thus they are suitable in developing a surgical simulation. This study uses mass spring model (MSM) to represent the human liver because MSM is a discrete model that is potentially more realistic than the finite element model (FEM). For a high-end computer aided medical technology such as the surgical simulator, the most important issues are to fulfil the basic requirement of a surgical simulator. Novice and experienced surgeons use surgical simulator for surgery training and planning. Therefore, surgical simulation must provide a realistic and fast responding virtual environment. This study focuses on fulfilling the time complexity and realistic of the surgical simulator. In order to have a fast responding simulation, the choice of numerical integration method is crucial. This study shows that MATLAB ode45 is the fastest method compared to 2nd ordered Euler, MATLAB ode113, MATLAB ode23s and MATLAB ode23t. However, the major issue is human liver consists of soft tissues. In modelling a soft tissue model, we need to understand the mechanical response of soft tissues to surgical manipulation. Any interaction between haptic device and the liver model may causes large deformation and topology change in the soft tissue model. Thus, this study investigates and presents the effect of varying mass, damping, stiffness coefficient on the nonlinear liver mass spring model. MATLAB performs and shows simulation results for each of the experiment. Additionally, the observed optimal dataset of liver behaviour is applied in SOFA (Simulation Open Framework Architecture) to visualize the major effect.


Sign in / Sign up

Export Citation Format

Share Document