Steady State Performance Characteristics of Single Pad Externally Adjustable Fluid Film Bearing in the Laminar and Turbulent Regimes

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
B. S. Shenoy ◽  
R. Pai

In an externally adjustable fluid film bearing, the hydrodynamic conditions can be changed as required in a controlled manner. The principal feature of the bearing is the facility to adjust its radial clearance and circumferential film thickness gradient. Unlike a tilting pad bearing, this bearing can have radial adjustments. The tilt adjustments are obtained by providing flexibility to the pad at one corner. This paper deals with the effect of turbulence on the steady state performance characteristics of a centrally loaded 120 deg single pad externally adjustable fluid film bearing. The bearing has an aspect ratio of 1 and operates over a wide range of eccentricity ratios with different radial and tilt adjustments. The Reynolds equation is solved numerically using the finite difference method. The linearized turbulence model of Ng and Pan (1965, “A Linearized Turbulent Lubrication Theory,” ASME J. Basic Eng., 87, pp. 675–688) as well as the simplified adiabatic model of Pinkus and Bupara (1979, “Adiabatic Solutions for Finite Journal Bearings,” ASME J. Lubr. Technol., 101, pp. 492–496) are incorporated in the solution scheme. The static performance characteristics calculated are presented in terms of load carrying capacity, attitude angle, friction variable, and Sommerfeld number. A comparative study with the combination of adjustments predicts that the static performance of the bearing is superior with negative radial and tilt adjustments.

2000 ◽  
Vol 123 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Sergei B. Glavatskikh

The paper reports results of the experimental investigation into the steady state performance characteristics of a tilting pad thrust bearing typical of design in general use. Simultaneous measurements are taken of the pad and collar temperatures, the pressure distributions, oil film thickness, and power loss as a function of shaft speed, bearing load, and supplied oil temperature. The effect of operating conditions on bearing performance is discussed. A small radial temperature variation is observed in the collar. A reduction in minimum oil film thickness with load is approximately proportional to p−0.6, where p is an average bearing pressure. It has also been found that the oil film pressure profiles change not only due to the average bearing load but also with an increase in shaft speed and temperature of the supplied oil.


Author(s):  
B. Satish Shenoy ◽  
Rammohan S. Pai B. ◽  
Raghuvir Pai B. ◽  
Shrikanth Rao D.

Paper deals with the effect of turbulence on steady state performance characteristics of an eccentrically loaded 120° single pad externally adjustable fluid film bearing. The bearing has an aspect ratio of one and operates over a wide range of eccentricity ratios and adjustments. Two load-offset positions (β/χ) of 0.45 and 0.55 are considered in the present analysis. Reynolds equation incorporated with the Linearized turbulence model of Ng and Pan is solved numerically using finite difference method. A comparative study predicts that, load capacity of a bearing operating with β/χ = 0.55 and Re = 16000 is superior for negative radial and tilt adjustment configuration of the pad.


Author(s):  
R Haque ◽  
S K Guha

The objective of the present article is to theoretically investigate the static performance characteristics of rough porous hydrodynamic journal bearings of finite width with the effect of slip flow at the porous-film interface on the basis of the Beavers-Joseph criterion. In the analysis, the roughness is uniformly distributed over the bearing surfaces, with no preferred position or direction in the surface. With the concept of a stochastic process for the isotropic roughness patterns, the steady-state performance characteristics in terms of load capacity, end flowrate, and frictional parameters are obtained at different parameters of practical importance by solving simultaneously the continuity equation of flow in the porous bush and the Reynolds-type equation using the finite difference techniques. According to the results obtained, this analysis reveals that the influence of roughness on the steady-state performance of the journal bearing is physically apparent and not negligible.


2014 ◽  
Vol 592-594 ◽  
pp. 1371-1375
Author(s):  
Nitesh Talekar ◽  
Punit Kumar

Consideration of surface roughness in steady state EHL line contact is the first step towards understanding the lubrication of rough surface problem. Current paper investigates the use of sinusoidal waviness in the contact; more precisely it gives performance of real fluid in EHL line contact. The effect of various parameters like rolling velocity (U) and maximum Hertzian pressure (ph) on surface roughness by using properties of linear and exponential piezo-viscosity is taken into consideration to evaluate behavior of pressure distribution of load carrying fluid film and film thickness. Full isothermal, Newtonian simulation of EHL problem gives described effects. Spiking or fluctuation of pressure and film thickness curves is expected to show presence of irregularities on the surface chosen and amount of fluctuation depends on certain parameters and intensity of irregularities present. Rolling side domain of-4.5 ≤ X ≤ 1.5 with grid size ∆X=0.01375 is selected. A computer code is developed to solve Reynolds equation, which governs the generation of pressure in the lubricated contact zone is discritized and solved along with load balance equation using Newton-Raphson technique.


Author(s):  
Girish Hariharan ◽  
Raghuvir Pai

A theoretical model of a four-pad bearing profile with unique adjustable or controllable features is simulated in the present study by considering load directed between the pads. Radial and tilt adjustable mechanism of the four bearing pads can effectively control and modify the rotor operating behaviour. Inward and outward motions of the bearing pads result in the generation of narrow and broader convergent regions, which directly influences the fluid film pressures. In the theoretical analysis, load-between-pad (LBP) orientations and pad adjustment configurations are taken account of by employing a modified film thickness equation. The effect of load position in influencing the steady state behaviour of the four-pad adjustable bearing under varied pad displaced conditions is analysed in this study. The outcome of the analysis highlighted the effectiveness of four-pad adjustable bearing in improving the steady state performance by operating under negative adjustment conditions and with load acting on the bearing pads.


Author(s):  
D. Sudheer Kumar Reddy ◽  
S. Swarnamani ◽  
B. S. Prabhu

Abstract In the present work the analysis of gas lubricated multileaf journal bearing has been presented. The two dimensional compressible Reynolds equation was solved to establish the pressure field in the clearance space of the bearing. Elastic deformation equation is coupled with the Reynolds equation to get the foil deflections and change in film thickness. The effect of bearing misalignment on foil bearing performance characteristics has been presented. The problem has been formulated using incremental finite element method. The effect of bearing misalignment on static performance characteristics like load carrying capacity, frictional torque, minimum film thickness and on dynamic characteristics in terms of stiffness and damping coefficients have been presented.


Author(s):  
Joel Harris ◽  
Dara Childs

Static performance characteristics and rotordynamic coefficients were experimentally determined for a four-pad, spherical-seat, tilting-pad journal bearing in load-between-pad configuration. Measured static characteristics include journal static equilibrium position, estimated power loss, and trailing-edge pad temperatures. Rotordynamic coefficients were determined from curve fits of measured complex dynamic-stiffness coefficients as a functions of the excitation frequency. A frequency-independent [M]-[C]-[K] model did a good job of fitting the measurements. Test conditions included speeds from 4 to 12 krpm and unit loads from 0 to 1896 kPa (0 to 275 psi). The bearing uses cool inlet oil to decrease the pad operating temperatures and increase the bearing’s load and speed capacity. The bearing has a nominal diameter of 101.78 mm (4.0070 in). Measurements indicated significant bearing crush with a radial bearing clearance of 99.63 μm (3.92 mils) in the axis 45° counterclockwise from the loaded axis and 54.60 μm (2.15 mils) in the axis 45° clockwise from the loaded axis. The pad length is 101.60 mm (4.00 in), giving L/D = 1.00. The pad arc angle is 73°, and the pivot offset ratio is 65%. Testing was performed using a test rig described by Kaul [1], and rotordynamic coefficients were extracted using a procedure adapted from Childs and Hale [2]. A bulk-flow Navier-Stokes model was used for predictions, using adiabatic conditions for the fluid in the bearings. However, the model assumes constant nominal clearances at all pads, and an average clearance was used based on measured clearances. Measured static eccentricities and attitude angles were significantly lower than predicted. Attitude angles varied from 6° to 39° and decreased with load. Power loss was well-predicted, with a maximum value of 25 kW (34 hp). The maximum detected pad temperature was 71°C (160°C) while the temperature rise from inlet to exit was over-predicted by 8°C (14°F). Direct stiffness and damping coefficients were significantly over-predicted, but the addition of a simple pivot-stiffness in series with the measured stiffness and damping values vastly improved the agreement between theory and experiment. Direct added masses were negative to a higher degree for Myy (y load direction) at low speeds and increased with speed. With the exception of Myy at zero load, they became positive before reaching 8,000 rpm. Although significant cross-coupled stiffness terms were present, they always had the same sign, producing a whirl frequency ratio of zero and netting unconditional stability over all test conditions.


Sign in / Sign up

Export Citation Format

Share Document