Static and Dynamic Analysis of Multileaf Foil Journal Bearings Considering Misalignment Effects

Author(s):  
D. Sudheer Kumar Reddy ◽  
S. Swarnamani ◽  
B. S. Prabhu

Abstract In the present work the analysis of gas lubricated multileaf journal bearing has been presented. The two dimensional compressible Reynolds equation was solved to establish the pressure field in the clearance space of the bearing. Elastic deformation equation is coupled with the Reynolds equation to get the foil deflections and change in film thickness. The effect of bearing misalignment on foil bearing performance characteristics has been presented. The problem has been formulated using incremental finite element method. The effect of bearing misalignment on static performance characteristics like load carrying capacity, frictional torque, minimum film thickness and on dynamic characteristics in terms of stiffness and damping coefficients have been presented.

2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Nguyen LaTray ◽  
Daejong Kim

Abstract The integration of foil bearing technology into high-speed oil-free machines has been slow in progress, in part, due to the low load-carrying capacity of the foil thrust bearing. It is crucial this issue is addressed through innovative solutions without overcomplicating the bearing design because simplicity is one of the attractive features of the foil bearing. This work presents novel thrust foil bearing with taper-flat configuration and pocket grooves on the bearing top foil as a secondary pressure boosting mechanism. Parametric study of the pocket dimensions on a rigid bearing reveals that the bearing static performance is the most sensitive to the pocket angular span. Further two-dimensional fluid–structure interaction analyses on foil thrust bearing predict a reduction of power loss by 10% with increased average film thickness. Minimum film thickness also increases when the bearing is lightly loaded but it is reduced 20% at the taper-flat transition area under high loading condition. This issue can be overcome by using stiffer bump foil; however, this is not implemented in this work due to other design constraints. Test results at 90,000 rpm and 140,000 rpm show, by adding the pocket groove pattern on the top foil, the power loss is reduced by 16% compared to the traditional taper-flat configuration.


2021 ◽  
Vol 37 ◽  
pp. 522-531
Author(s):  
Haiyin Cao ◽  
Yu Huang ◽  
Youmin Rong ◽  
Hao Wu ◽  
Minghui Guo

Abstract In this study, the influence of inlet pocket size on the static performance of non-Newtonian lubricated hole-entry hybrid journal bearings is theoretically analyzed. The oil film of the bearing is discretized into a nonuniform mesh containing the geometric characteristics of the oil inlet pocket, and the inlet pocket is treated as a micro-oil recess. The Reynolds equation is solved by the finite element method based on Galerkin's techniques, and a new solution strategy to solve the recess/pocket pressure is proposed. The power-law model is used to introduce the non-Newtonian effect. The results show that the static performance characteristics of this type of bearing are greatly affected by the pocket size at both zero speed and high speed.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


2011 ◽  
Vol 199-200 ◽  
pp. 749-753
Author(s):  
Xiao Bo Zuo ◽  
Jian Min Wang ◽  
Chao Liang Guan ◽  
Juan Li

The static performance of an aerostatic bearing with angled surface self-slot-compensation is analyzed. The consistent condition was applied to unitize the Reynolds equation of different forms and the finite element method (FEM) was used to solve the equation. The load carrying capacity (LCC) and the stiffness of the bearing was obtained and the influence of the geometric parameters was discussed. It is concluded that this self-compensating aerostatic bearing can achieve a good performance; the geometric parameters of the gap are interactive, and should be rationally matched.


2014 ◽  
Vol 607 ◽  
pp. 608-611
Author(s):  
Hui Hui Feng ◽  
Chun Dong Xu ◽  
Feng Feng Wang

The water-lubricated bearings have gained an increasing focus to overcome the disadvantages of the oil film bearings and gas bearings. In this paper, the influences of orifice diameter in aligned and misaligned conditions on the static performance of two hydrostatic, four-recess, water-lubricated journal bearings used to support a rigid rotor, are investigated. The steady Reynolds equation for the journal bearing for the turbulent bulk flow and the film thickness expression considering tilting angles are used and numerically solved by finite difference method. Results demonstrate that the static performances, such as the quality, power loss and temperature rise are affected by the tilting angles, orifice diameter to some degree.


2011 ◽  
Vol 148-149 ◽  
pp. 778-784
Author(s):  
Rattapasakorn Sountaree ◽  
Panichakorn Jesda ◽  
Mongkolwongrojn Mongkol

This paper presents the performance characteristics of two surfaces in line contact under isothermal mixed lubrication with non-Newtonian liquid–solid lubricant base on Power law viscosity model. The time dependent Reynolds equation, elastic equation and viscosity equation were formulated for compressible fluid. Newton-Raphson method and multigrid technique were implemented to obtain film thickness profiles, friction coefficient and load carrying in the contact region at various roughness amplitudes, applied loads, speeds and the concentration of solid lubricant. The simulation results showed that roughness amplitude has a significant effect on the film pressure, film thickness and surface contact pressure in the contact region. The film thickness decrease but friction coefficient and asperities load rapidly increases when surface roughness amplitude increases or surface speed decreases. When the concentration of solid lubricant increased, friction coefficient and asperities load decrease but traction and film thickness increase.


Author(s):  
Joel Harris ◽  
Dara Childs

Static performance characteristics and rotordynamic coefficients were experimentally determined for a four-pad, spherical-seat, tilting-pad journal bearing in load-between-pad configuration. Measured static characteristics include journal static equilibrium position, estimated power loss, and trailing-edge pad temperatures. Rotordynamic coefficients were determined from curve fits of measured complex dynamic-stiffness coefficients as a functions of the excitation frequency. A frequency-independent [M]-[C]-[K] model did a good job of fitting the measurements. Test conditions included speeds from 4 to 12 krpm and unit loads from 0 to 1896 kPa (0 to 275 psi). The bearing uses cool inlet oil to decrease the pad operating temperatures and increase the bearing’s load and speed capacity. The bearing has a nominal diameter of 101.78 mm (4.0070 in). Measurements indicated significant bearing crush with a radial bearing clearance of 99.63 μm (3.92 mils) in the axis 45° counterclockwise from the loaded axis and 54.60 μm (2.15 mils) in the axis 45° clockwise from the loaded axis. The pad length is 101.60 mm (4.00 in), giving L/D = 1.00. The pad arc angle is 73°, and the pivot offset ratio is 65%. Testing was performed using a test rig described by Kaul [1], and rotordynamic coefficients were extracted using a procedure adapted from Childs and Hale [2]. A bulk-flow Navier-Stokes model was used for predictions, using adiabatic conditions for the fluid in the bearings. However, the model assumes constant nominal clearances at all pads, and an average clearance was used based on measured clearances. Measured static eccentricities and attitude angles were significantly lower than predicted. Attitude angles varied from 6° to 39° and decreased with load. Power loss was well-predicted, with a maximum value of 25 kW (34 hp). The maximum detected pad temperature was 71°C (160°C) while the temperature rise from inlet to exit was over-predicted by 8°C (14°F). Direct stiffness and damping coefficients were significantly over-predicted, but the addition of a simple pivot-stiffness in series with the measured stiffness and damping values vastly improved the agreement between theory and experiment. Direct added masses were negative to a higher degree for Myy (y load direction) at low speeds and increased with speed. With the exception of Myy at zero load, they became positive before reaching 8,000 rpm. Although significant cross-coupled stiffness terms were present, they always had the same sign, producing a whirl frequency ratio of zero and netting unconditional stability over all test conditions.


2012 ◽  
Vol 550-553 ◽  
pp. 3214-3218
Author(s):  
Jun Yan Zhang ◽  
Shu Kui Han

Based on the unified Reynolds equation model and fast Fourier transform (FFT) method, the lubrication performance of the piston pin bearing for high power density diesel engine was studied by numerical simulation. First of all, through the coupled solving of a unified Reynolds equation and elastic deformation equation, the orbit of journal center for piston pin bearing is investigated. The eccentricity ratio of the piston pin bearing in vertical direction of the piston stroke is smaller, however it is much larger in the downward direction of the piston stroke, which indicate that the below area of the piston pin bearing bears greater load and occurs larger deformation. This is consistent with the reality that the below area of the piston pin bearing is prone to damage and wear. Secondly, the influence of the different bearing clearances and width on the minimum oil film thickness is discussed, The results show that the minimum oil film thickness is increased, while the width of piston pin bearing is increased or the clearance of piston pin bearing is decreased.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
B. S. Shenoy ◽  
R. Pai

In an externally adjustable fluid film bearing, the hydrodynamic conditions can be changed as required in a controlled manner. The principal feature of the bearing is the facility to adjust its radial clearance and circumferential film thickness gradient. Unlike a tilting pad bearing, this bearing can have radial adjustments. The tilt adjustments are obtained by providing flexibility to the pad at one corner. This paper deals with the effect of turbulence on the steady state performance characteristics of a centrally loaded 120 deg single pad externally adjustable fluid film bearing. The bearing has an aspect ratio of 1 and operates over a wide range of eccentricity ratios with different radial and tilt adjustments. The Reynolds equation is solved numerically using the finite difference method. The linearized turbulence model of Ng and Pan (1965, “A Linearized Turbulent Lubrication Theory,” ASME J. Basic Eng., 87, pp. 675–688) as well as the simplified adiabatic model of Pinkus and Bupara (1979, “Adiabatic Solutions for Finite Journal Bearings,” ASME J. Lubr. Technol., 101, pp. 492–496) are incorporated in the solution scheme. The static performance characteristics calculated are presented in terms of load carrying capacity, attitude angle, friction variable, and Sommerfeld number. A comparative study with the combination of adjustments predicts that the static performance of the bearing is superior with negative radial and tilt adjustments.


Author(s):  
Kai Feng ◽  
Shigehiko Kaneko

The applications of foil air bearings, which are recognized to be the best choice for oil free applications, have been extended for use in a wide range of turbo-miachineries with high speed and high temperature. Lubricant temperature becomes an important factor in the performance of foil air bearings, especially at high rotational speeds and high loads or at high ambient temperature. However, most of the published foil air bearing models were based on the isothermal assumption. This study presents a thermohydrodynamic analysis (THD) of Multi Wound Foil Bearing (MWFB), in which the Reynolds’ equation is solved with the gas viscosity as a function of temperature that is obtained from the energy equation. Lobatto point quadrature, which was proposed by Elrod and Brewe and introduced into compressible calculation by Moraru and Keith, is utilized to accelerate the iteration process with a sparse mesh across film thickness. A finite element model of the foil is used to describe the foil elasticity. An iterative procedure is performed between the Reynolds’ equation, the foil elastic deformation equation and the energy equation, until the convergence is achieved. A three-dimensional temperature prediction of air film is presented and a comparison of THD to isothermal results is made to emphasize the importance of thermal effects. Finally, published experimental data are used to validate this numerical solution.


Sign in / Sign up

Export Citation Format

Share Document