Combination of CFD and DOE to Analyze and Improve the Mass Flow Rate in Urinary Catheters

2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Patrick Frawley ◽  
Marco Geron

The urinary catheter is a thin plastic tube that has been designed to empty the bladder artificially, effortlessly, and with minimum discomfort. The current CH14 male catheter design was examined with a view to optimizing the mass flow rate. The literature imposed constraints to the analysis of the urinary catheter to ensure that a compromise between optimal flow, patient comfort, and everyday practicality from manufacture to use was achieved in the new design. As a result a total of six design characteristics were examined. The input variables in question were the length and width of eyelets 1 and 2 (four variables), the distance between the eyelets, and the angle of rotation between the eyelets. Due to the high number of possible input combinations a structured approach to the analysis of data was necessary. A combination of computational fluid dynamics (CFD) and design of experiments (DOE) has been used to evaluate the “optimal configuration.” The use of CFD couple with DOE is a novel concept, which harnesses the computational power of CFD in the most efficient manner for prediction of the mass flow rate in the catheter.

Author(s):  
V.N. Petrov ◽  
◽  
V.F. Sopin ◽  
L.A. Akhmetzyanova ◽  
Ya.S. Petrova ◽  
...  

Author(s):  
Roberto Bruno Bossio ◽  
Vincenzo Naso ◽  
Marian Cichy ◽  
Boleslaw Pleszewski
Keyword(s):  

2021 ◽  
Vol 62 (8) ◽  
Author(s):  
Lionel Hirschberg ◽  
Friedrich Bake ◽  
Karsten Knobloch ◽  
Angelo Rudolphi ◽  
Sebastian Kruck ◽  
...  

AbstractMeasurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozzle caused a mass-flow rate change, which resulted in a downstream-measured acoustic response. The downstream acoustic pressure was found to remain negative as long as the swirl is maintained and reflections from the open downstream pipe termination do not interfere. The amplitude of this initial acoustic response was found to be proportional to the square of the tangential mass-flow rate used to generate swirl. When the tangential injection valve was closed, the mass-flow rate through the nozzle increased, resulting in an increase of the downstream acoustic pressure. This increase in signal was compared to the prediction of an empirical quasi-steady model, constructed from steady-state flow measurements. As the opening time of the valve was varied, the signal due to swirl evacuation showed an initial overshoot with respect to quasi-steady behavior, after which it gradually decayed to quasi-steady behavior for tangential injection times long compared to the convection time in the pipe upstream of the nozzle. This demonstrates that the acoustic signal can be used to obtain quantitative information concerning the time dependence of the swirl in the system. This could be useful for understanding the dynamics of flow in engines with swirl-stabilized combustion. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document