Approximate Analytical Model of Anchor Pull-Out Test

1982 ◽  
Vol 49 (4) ◽  
pp. 768-772 ◽  
Author(s):  
G. R. Miller ◽  
L. M. Keer

The two-dimensional problem of a rigid, unbonded plate embedded in an infinite medium with cracks emanating from the edges of the plate is solved with loading conditions approximating those found in pull-out testing and other engineering applications. The analysis employs the Green’s function approach of Lo, which leads to a singular integral equation that is solved numerically. Stress intensity factors are presented for several combinations of load geometry, crack length, and crack extension angle. These results are used to predict qualitively the crack propagation behavior under the assumptions of linear-elastic fracture mechanics.

CORROSION ◽  
1974 ◽  
Vol 30 (5) ◽  
pp. 181-189 ◽  
Author(s):  
W. F. CZYRKLIS ◽  
M. LEVY

Abstract The stress corrosion cracking (SCC) behavior of U-3/4% Ti, and uranium alloys 3/4% Quad, 1% Quad, and 1% Quint have been studied utilizing a linear elastic fracture mechanics approach. The threshold stress intensities for stress corrosion crack propagation for these alloys have been determined in distilled H2O and NaCl solutions containing 50 ppm Cl− and 21,000 ppm Cl−. All of the alloys studied may be classified as very susceptible to SCC in aqueous solutions since they exhibit SCC in distilled H2O (<1 ppm Cl−) and have low KIscc values in NaCl solutions. Crack extension in all of the alloys in all environments was transgranular and failure occurred by brittle quasicleavage fracture in NaCl solution.


1997 ◽  
Vol 50 (2) ◽  
pp. 83-96 ◽  
Author(s):  
M. H. Aliabadi

This article reviews advances in the application of boundary element methods (BEM) to fracture mechanics which have taken place over the last 25 years. Applications discussed include linear, nonlinear and transient problems. Also reviewed are contributions using the indirect boundary element formulations. Over this period the method has emerged as the most efficient technique for the evaluation of stress intensity factors (SIF) and crack growth analysis in the context of linear elastic fracture mechanics (LEFM). Much has also been achieved in the application to dynamic fracture mechanics. This review article contains 289 references.


2012 ◽  
Vol 6 (5) ◽  
pp. 973-984 ◽  
Author(s):  
C. Plate ◽  
R. Müller ◽  
A. Humbert ◽  
D. Gross

Abstract. The ongoing disintegration of large ice shelf parts in Antarctica raise the need for a better understanding of the physical processes that trigger critical crack growth in ice shelves. Finite elements in combination with configurational forces facilitate the analysis of single surface fractures in ice under various boundary conditions and material parameters. The principles of linear elastic fracture mechanics are applied to show the strong influence of different depth dependent functions for the density and the Young's modulus on the stress intensity factor KI at the crack tip. Ice, for this purpose, is treated as an elastically compressible solid and the consequences of this choice in comparison to the predominant incompressible approaches are discussed. The computed stress intensity factors KI for dry and water filled cracks are compared to critical values KIc from measurements that can be found in literature.


2004 ◽  
Vol 261-263 ◽  
pp. 57-62 ◽  
Author(s):  
Shui Cheng Yang ◽  
Li Song ◽  
Hong Jian Liao

The authors present a procedure for the analysis of the stability and propagation of cracks in arch dams based on linear elastic fracture mechanics. A finite element method was used to calculate the stress intensity factors(KⅠ, KⅡ and KⅢ) of crack in the concrete arch dam, and fracture analysis for arch dams was carried out, which based on the criterion of three-dimensional mixed mode fracture of concrete from the experiment. The analysis method can be applied to evaluate the safety of the arch dam and improve the design for arch dam.


2007 ◽  
Vol 348-349 ◽  
pp. 461-464
Author(s):  
Matteo Benedetti ◽  
M. Beghini ◽  
L. Bertini ◽  
V. Fontanari

The present paper is aimed at investigating the behaviour of fatigue cracks emanating from sharp V-shaped notches. To this purpose, several tests has been conducted on Al-7075-T651 notched specimens using a servohydraulic machine by changing the directions and levels of the applied load. The crack growth have been interpreted on the basis of a linear elastic fracture mechanics approach by adopting a weight function derived by the authors for the calculation of the stress intensity factors (SIFs) of inclined edge-cracks emanating from V-shaped notches.


Sign in / Sign up

Export Citation Format

Share Document