Anode Side Diffusion Barrier Coating for Solid Oxide Fuel Cells Interconnects

Author(s):  
J. Froitzheim ◽  
L. Niewolak ◽  
M. Brandner ◽  
L. Singheiser ◽  
W. J. Quadakkers

During the operation of solid oxide fuel cells (SOFCs) the Ni base anode and/or Ni-mesh is in direct contact with the ferritic steel interconnect or the metallic substrate. For assuring long-term stack operation a diffusion barrier layer with high electronic conductivity may be needed to impede interdiffusion between the various components. A pre-oxidation layer on the ferritic steel turned out to be not viable as a barrier layer since a Ni-layer tends to dissociate the oxide scale. Therefore the potential of ceria as a diffusion barrier layer for the anode side of the SOFC was estimated. The barrier properties of a ceria coating between the Ni and the ferritic steel Crofer 22 APU were tested for 1000 h in Ar–4H2–2H2O at 800°C. Conductivity experiments were performed in the same atmosphere at different temperatures. After long-term exposures no indication of interdiffusion between Ni and ferritic steel could be detected, however, sputtered coatings on ferritic steel substrates showed significantly lower conductivities than bulk ceria samples because of void formation between the ceria and the oxide on the steel surface. The latter could be prevented by an intermediate copper layer, which resulted in overall area specific resistance values lower than 20 mΩ cm2 after 100 h exposure at 800°C.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaiming Cheng ◽  
Huixia Xu ◽  
Lijun Zhang ◽  
Jixue Zhou ◽  
Xitao Wang ◽  
...  

AbstractThe Ce0.8Gd0.2O2−δ (CGO) interlayer is commonly applied in solid oxide fuel cells (SOFCs) to prevent chemical reactions between the (La1−xSrx)(Co1−yFey)O3−δ (LSCF) oxygen electrode and the Y2O3-stabilized ZrO2 (YSZ) electrolyte. However, formation of the YSZ–CGO solid solution with low ionic conductivity and the SrZrO3 (SZO) insulating phase still happens during cell production and long-term operation, causing poor performance and degradation. Unlike many experimental investigations exploring these phenomena, consistent and quantitative computational modeling of the microstructure evolution at the oxygen electrode–electrolyte interface is scarce. We combine thermodynamic, 1D kinetic, and 3D phase-field modeling to computationally reproduce the element redistribution, microstructure evolution, and corresponding ohmic loss of this interface. The influences of different ceramic processing techniques for the CGO interlayer, i.e., screen printing and physical laser deposition (PLD), and of different processing and long-term operating parameters are explored, representing a successful case of quantitative computational engineering of the oxygen electrode–electrolyte interface in SOFCs.


2015 ◽  
Vol 123 (1436) ◽  
pp. 205-212 ◽  
Author(s):  
Chun-Huang TSAI ◽  
Chang-Sing HWANG ◽  
Chun-Liang CHANG ◽  
Sheng-Fu YANG ◽  
Shih-Wei CHENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document