free diffusion
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 27)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
pp. 419-439
Author(s):  
Lixing Shen ◽  
Chuanfeng Zhao ◽  
Xingchuan Yang ◽  
Yikun Yang ◽  
Ping Zhou

Abstract. The 2019 Australian mega fires were unprecedented considering their intensity and consistency. There has been much research on the environmental and ecological effects of these mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion, yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol emissions. Near the coastal site of Brisbane Archerfield during January 2020, when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, black carbon (BC) and organic carbon (OC) approximately 240 %, 425 % and 630 % of the averages in other non-fire years. Using 20 years' wind observations of hourly time resolution from a global observation network managed by the National Oceanic and Atmospheric Administration (NOAA), we found that the SLB day number during that month was only 4, accounting for 33.3 % of the multi-years' average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effects and aerosol emission of the nearby fire spots were not the main causes of the local SLB anomaly, while the remote transport of aerosols from the fire centre was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and the warming effect of long-range transported BC and CO2. The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion, while the large-scale wind field played a secondary role at 500 m. The large-scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus making SLB speed decrease further, forming a positive feedback mechanism.


2021 ◽  
Vol 2021 (12) ◽  
pp. 027
Author(s):  
G. Rigopoulos ◽  
A. Wilkins

Abstract We use the Hamilton-Jacobi (H-J) formulation of stochastic inflation to describe the evolution of the inflaton during a period of Ultra-Slow Roll (USR), taking into account the field's velocity and its gravitational backreaction. We demonstrate how this formalism allows one to modify existing slow-roll (SR) formulae to be fully valid outside of the SR regime. We then compute the mass fraction, β, of Primordial Black Holes (PBHs) formed by a plateau in the inflationary potential. By fully accounting for the inflaton velocity as it enters the plateau, we find that PBHs are generically overproduced before the inflaton's velocity reaches zero, ruling out a period of free diffusion or even stochastic noise domination on the inflaton dynamics. We also examine a local inflection point and similarly conclude that PBHs are overproduced before entering a quantum diffusion dominated regime. We therefore surmise that the evolution of the inflaton is always predominantly classical with diffusion effects always subdominant. Both the plateau and the inflection point are characterized by a very sharp transition between the under- and over-production regimes. This can be seen either as severe fine-tunning on the inflationary production of PBHs, or as a very strong link between the fraction β and the shape of the potential and the plateau's extent.


2021 ◽  
Author(s):  
Lixing Shen ◽  
Chuanfeng Zhao ◽  
Xingchuan Yang ◽  
Yikun Yang ◽  
Ping Zhou

Abstract. The 2019 Australia mega fires were unprecedented considering its intensity and consistency. There have been many researches on the environmental and ecological effects of the mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol loadings. Near the coastal site of Brisbane Archerfield during January in 2020 when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, Black Carbon (BC) and Organic Carbon (OC) approximately 240 %, 425 %, 630 % of the averages of other non-fire years. Using 20 years’ wind observations of hourly time resolution from global observation network managed by National Oceanic and Atmospheric Administration (NOAA), we found that SLB day number during that month was only four, accounting for 33.3 % of the multi-years’ average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effect and aerosol emission of the nearby fire spots were not the main cause of local SLB anomaly while the remote transport of aerosols from the fire center was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and warming effect of long-range transported BC and CO2. The large scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion while large scale wind field played a secondary role at 500 m. Large scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus further made SLB speed decrease, forming a positive feedback mechanism.


2021 ◽  
Author(s):  
Zijing Dong ◽  
Fuyixue Wang ◽  
Lawrence Wald ◽  
Kawin Setsompop

AbstractPurposeTo develop an efficient acquisition technique for distortion-free diffusion MRI and diffusion-relaxometry.MethodsA new ACcelerated Echo-train shifted Echo-Planar Time-resolved Imaging (ACE-EPTI) technique is developed to achieve high-SNR, distortion- and blurring-free diffusion and diffusion-relaxometry imaging. ACE-EPTI employs a newly designed variable density spatiotemporal encoding with self-navigation capability, that allows submillimeter in-plane resolution using only 3-shot. Moreover, an echo-train-shifted acquisition is developed to achieve minimal TE, together with an SNR-optimal readout length, leading to ~30% improvement in SNR efficiency over single-shot EPI. To recover the highly accelerated data with high image quality, a tailored subspace image reconstruction framework is developed, that corrects for odd/even-echo phase difference, shot-to-shot phase variation, and the B0 field changes due to field drift and eddy currents across different dynamics. After the phase-corrected subspace reconstruction, artifacts-free high-SNR diffusion images at multiple TEs are obtained with varying T2* weighting.ResultsSimulation, phantom and in-vivo experiments were performed, which validated the 3-shot spatiotemporal encoding provides accurate reconstruction at submillimeter resolution. The use of echo-train shifting and optimized readout length improves the SNR-efficiency by 27-36% over single-shot EPI. The reconstructed multi-TE diffusion images were demonstrated to be free from distortion (susceptibility and eddy currents) and phase/field variation induced artifacts. These improvements of ACE-EPTI enable improved diffusion tensor imaging and rich multi-TE information for diffusion-relaxometry analysis.ConclusionACE-EPTI was demonstrated to be an efficient and powerful technique for high-resolution diffusion imaging and diffusion-relaxometry, which provides high SNR, distortion- and blurring-free, and time-resolved multi-echo images by a fast 3-shot acquisition.


Author(s):  
Cecilia Villarruel ◽  
Pablo S. Aguilar ◽  
Silvina Ponce Dawson
Keyword(s):  

2021 ◽  
Vol 2 (3) ◽  
pp. 91-99
Author(s):  
Shirin Salehi ◽  
Naghmeh Sadat Moayedian ◽  
Mohammad Taghi Shafiee

Molecular communication is transmitting and receiving chemical signals using molecules and is an interdisciplinary field between nanotechnology, biology, and communication. Molecular communication can be used for connecting bio-nano things. The connected nano-things build a nano-network. Transport mechanisms in molecular communication include free diffusion, gap junction channels, molecular motors, self-propelling microorganisms like bacteria and random collision of mobile nano-things. Free diffusion is the most widely used transport mechanism in the literature. Brownian motion is always available and its energy consumption is zero. This paper explores the therapeutic applications of rate control in the Internet of Bio-Nano Things and reviews the recent trends and advancements in the field of molecular communication. These methods aim to guarantee the desired rate of drug molecules at the target site and overcome the side effects of excessive emission.


2021 ◽  
Author(s):  
Yanshuang Shi ◽  
Menke Sheng ◽  
Qingsong Qu ◽  
Yuyao Liao ◽  
Lijng Lv ◽  
...  

Abstract In this study, molecular dynamics simulation was applied to the construction of small intestinal epithelial cell membrane and prediction of drug absorption. First, we constructed a system of a small intestinal epithelial cell membrane that was close to the real proportion and investigated the effects of temperature, water layer thickness, and ionic strength on membrane properties to optimize environmental parameters. Next, three drugs with different absorptivity, including Ephedrine (EPH), Quercetin (QUE), and Baicalin (BAI), were selected as model drugs to study the ability of drugs through the membrane by the free diffusion and umbrella sampling simulation, and the drug permeation ability was characterized by the free diffusion coefficient D and free energy barrier (△G) in the processes. The results showed that the free diffusion coefficient D’ and △G’ orders of the three drugs were consistent with the classical experimental absorption order, indicating that these two parameters could be used to jointly characterize the membrane permeability of the drugs.


Sign in / Sign up

Export Citation Format

Share Document