Limit Analysis of Flow Through Inclined Converging Planes

1980 ◽  
Vol 102 (2) ◽  
pp. 109-117 ◽  
Author(s):  
M. Kiuchi ◽  
B. Avitzur

A variety of mathematical models may be used to analyze plastic deformation during a metal-forming process. One of these methods—limit analysis—places the estimate of required power between an upper bound and a lower bound. The upper- and lower-bound analysis are designed so that the actual power or forming stress requirement is less than that predicted by the upper bound and greater than that predicted by the lower bound. Finding a lower upper-bound and a higher lower-bound reduces the uncertainty of the actual power requirement. Upper and lower bounds will permit the determination of such quantities as required forces, limitations on the process, optimal die design, flow patterns, and prediction and prevention of defects. Fundamental to the development of both upper-bound and lower-bound solutions is the division of the body into zones. For each of the zones there is written either a velocity field (upper bound) or a stress field (lower bound). A better choice of zones and fields brings the calculated values closer to actual values. In the present work, both upper- and lower-bound solutions are presented for plane-strain flow through inclined converging dies. For the upper bound, trapezoidal velocity fields, uni-triangular velocity fields, and multi-triangular velocity fields have been dealt with and the solutions compared to previously published work on cylindrical velocity fields. It was found that in different domains of the various combinations of the process parameters, different patterns of flow (cylindrical, triangular, etc.) provide lower upper-bound solutions. The lower-bound solution for plane-strain flow through inclined converging planes is newly developed.

10.37236/3097 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Fateme Raei Barandagh ◽  
Amir Rahnamai Barghi

Let $n>1$ be an integer and $p$ be a prime number. Denote by $\mathfrak{C}_{p^n}$ the class of non-thin association $p$-schemes of degree $p^n$. A sharp upper and lower bounds on the rank of schemes in $\mathfrak{C}_{p^n}$ with a certain order of thin radical are obtained. Moreover, all schemes in this class whose rank are equal to the lower bound are characterized and some schemes in this class whose rank are equal to the upper bound are constructed. Finally, it is shown that the scheme with minimum rank in $\mathfrak{C}_{p^n}$ is unique up to isomorphism, and it is a fusion of any association $p$-schemes with degree $p^n$.


1970 ◽  
Vol 92 (1) ◽  
pp. 158-164 ◽  
Author(s):  
P. C. T. Chen

A method for selecting admissible velocity fields is presented for incompressible material. As illustrations, extrusion processes through three basic types of curved dies have been treated: cosine, elliptic, and hyperbolic. Upper-bound theorem is used in obtaining mean extrusion pressures and also in choosing the most suitable deformation pattern for extrusion through square dies. Effects of die geometry, friction, and material properties are discussed.


2017 ◽  
Vol 7 (2) ◽  
pp. 169-181
Author(s):  
Audra McMillan ◽  
Adam Smith

Abstract Block graphons (also called stochastic block models) are an important and widely studied class of models for random networks. We provide a lower bound on the accuracy of estimators for block graphons with a large number of blocks. We show that, given only the number $k$ of blocks and an upper bound $\rho$ on the values (connection probabilities) of the graphon, every estimator incurs error ${\it{\Omega}}\left(\min\left(\rho, \sqrt{\frac{\rho k^2}{n^2}}\right)\right)$ in the $\delta_2$ metric with constant probability for at least some graphons. In particular, our bound rules out any non-trivial estimation (that is, with $\delta_2$ error substantially less than $\rho$) when $k\geq n\sqrt{\rho}$. Combined with previous upper and lower bounds, our results characterize, up to logarithmic terms, the accuracy of graphon estimation in the $\delta_2$ metric. A similar lower bound to ours was obtained independently by Klopp et al.


Meccanica ◽  
2017 ◽  
Vol 53 (7) ◽  
pp. 1661-1672 ◽  
Author(s):  
Benjamin Terrade ◽  
Anne-Sophie Colas ◽  
Denis Garnier

2006 ◽  
Vol 17 (04) ◽  
pp. 851-867 ◽  
Author(s):  
EHUD FRIEDGUT ◽  
ORNA KUPFERMAN ◽  
MOSHE Y. VARDI

The complementation problem for nondeterministic word automata has numerous applications in formal verification. In particular, the language-containment problem, to which many verification problems is reduced, involves complementation. For automata on finite words, which correspond to safety properties, complementation involves determinization. The 2n blow-up that is caused by the subset construction is justified by a tight lower bound. For Büchi automata on infinite words, which are required for the modeling of liveness properties, optimal complementation constructions are quite complicated, as the subset construction is not sufficient. From a theoretical point of view, the problem is considered solved since 1988, when Safra came up with a determinization construction for Büchi automata, leading to a 2O(n log n) complementation construction, and Michel came up with a matching lower bound. A careful analysis, however, of the exact blow-up in Safra's and Michel's bounds reveals an exponential gap in the constants hiding in the O( ) notations: while the upper bound on the number of states in Safra's complementary automaton is n2n, Michel's lower bound involves only an n! blow up, which is roughly (n/e)n. The exponential gap exists also in more recent complementation constructions. In particular, the upper bound on the number of states in the complementation construction of Kupferman and Vardi, which avoids determinization, is (6n)n. This is in contrast with the case of automata on finite words, where the upper and lower bounds coincides. In this work we describe an improved complementation construction for nondeterministic Büchi automata and analyze its complexity. We show that the new construction results in an automaton with at most (0.96n)n states. While this leaves the problem about the exact blow up open, the gap is now exponentially smaller. From a practical point of view, our solution enjoys the simplicity of the construction of Kupferman and Vardi, and results in much smaller automata.


1956 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
W Freiberger

This paper deals with the problem of the plastic deformation of a beam under the action of three perfectly rough rigid dies, two dies applied to one side, one die to the other side of the beam, the single die being situated between the two others. It is treated as a problem of plane plastic flow. Discontinuous stress and velocity fields are assumed and upper and lower bounds for the pressure sufficient to cause pronounced plastic yielding determined by limit analysis.


2010 ◽  
Vol 02 (03) ◽  
pp. 363-377 ◽  
Author(s):  
CHARLES R. JOHNSON ◽  
YULIN ZHANG

Given are tight upper and lower bounds for the minimum rank among all matrices with a prescribed zero–nonzero pattern. The upper bound is based upon solving for a matrix with a given null space and, with optimal choices, produces the correct minimum rank. It leads to simple, but often accurate, bounds based upon overt statistics of the pattern. The lower bound is also conceptually simple. Often, the lower and an upper bound coincide, but examples are given in which they do not.


2011 ◽  
Vol 12 (01n02) ◽  
pp. 1-17 ◽  
Author(s):  
VITTORIO BILÒ ◽  
ROBERTA BOVE

After almost seven years from its definition,2 the price of stability of undirected network design games with fair cost allocation remains to be elusive. Its exact characterization has been achieved only for the basic case of two players2,7 and, as soon as the number of players increases, the gap between the known upper and lower bounds becomes super-constant, even in the special variants of multicast and broadcast games. Motivated by the intrinsic difficulties that seem to characterize this problem, we analyze the already challenging case of three players and provide either new or improved bounds. For broadcast games, we prove an upper bound of 1.485 which exactly matches a lower bound given in Ref. 4; for multicast games, we show new upper and lower bounds which confine the price of stability in the interval [1.524; 1.532]; while, for the general case, we give an improved upper bound of 1.634. The techniques exploited in this paper are a refinement of those used in Ref. 7 and can be easily adapted to deal with all the cases involving a small number of players.


Sign in / Sign up

Export Citation Format

Share Document