Comparison of Experimental and Computational Shock Structure in a Transonic Compressor Rotor

1981 ◽  
Vol 103 (1) ◽  
pp. 78-88
Author(s):  
G. Haymann-Haber ◽  
W. T. Thompkins

Measurement of passage shock strength in a transonic compressor rotor using a gas fluorescent technique revealed an unexpected variation in shock strength in the radial direction. An axisymmetric idealization would normally predict that the passage shock strength would gradually weaken when moving radially inward until disappearing at the sonic radius. However, the measurements indicated a sharp peak in strength at the nominal sonic radius. Blade boundary layer separation originating at this point accounts for about one half of the total rotor losses. A numerical computation of the three-dimensional inviscid flow, using time-marching techniques, has accurately predicted in general the radial and tangential variations in passage shock strength and in particular the sharp pressure peak at the nominal sonic radius. The overall shock strength was somewhat over-predicted, but this overprediction may be the result of boundary layer separation in the experiment. This paper presents comparisons between the optical density measurements and computational results and in addition a short analytical discussion which demonstrates that the sharp shock strength rise may occur in many transonic compressor rotors.

Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Thomas J. Sullivan ◽  
Aspi R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of 8 periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier-Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20% of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


Author(s):  
R. Fuchs ◽  
W. Steinert ◽  
H. Starken

A transonic compressor rotor cascade designed for an inlet Mach number of 1.09 and 14 degrees of flow turning has been redesigned for higher loading by an increased pitch-to-chord ratio. Test results, showing the influence of inlet Mach number and flow angle on cascade performance are presented and compared to data of the basic design. Loss-levels of both, the original and the redesigned higher loaded blade were identical at design condition, but the new design achieved even lower losses at lower inlet Mach numbers. The computational design and analysis has been performed by a fast inviscid time-dependent code coupled to a viscous direct/inverse integral boundary-layer code. Good agreement was achieved between measured and predicted surface Mach number distributions as well as exit-flow angles. A boundary-layer visualization method has been used to detect laminar separation bubbles and turbulent separation regions. Quantitative results of measured bubble positions are presented and compared to calculated results.


1977 ◽  
Vol 99 (3) ◽  
pp. 460-475 ◽  
Author(s):  
A. H. Epstein

The flow in a 59-cm dia high work, transonic compressor rotor has been visualized using a fluorescent gas, 2,3, butanedione, as a tracer. The technique allows the three-dimensional flow to be imaged as a set of distinct planes. Quantitative static density maps were obtained by correcting the images for distortion and nonlinearities introduced by the illumination and imaging systems. These images and maps were used to analyze the three-dimensional nature of the blade’s boundary layer and shock system.


1998 ◽  
Vol 120 (2) ◽  
pp. 233-246 ◽  
Author(s):  
C. Hah ◽  
D. C. Rabe ◽  
T. J. Sullivan ◽  
A. R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of eight periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier–Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20 percent of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


Sign in / Sign up

Export Citation Format

Share Document