rotor losses
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 215
Author(s):  
Tomasz Wolnik ◽  
Vítezslav Styskala ◽  
Tomas Mlcak

Fractional slot, PMSM motors with a properly designed electromagnetic circuit allow for obtaining high power density factors (more than 4 kW per 1 kg of total motor weight). The selection of the number of magnetic poles to the specific dimensions and operating conditions of the motor, as well as the number of slots for the selected number of magnetic poles is the subject of the analysis in this article. This issue is extremely important because it affects the mass of the motor, the value of shaft torque, shaft power and the value of rotor losses. The aim of the work is to select solutions with the highest values of power density factor and, at the same time, the lowest values of rotor losses. The object of the study is a fractional slot PMSM motor with an external solid rotor core with surface permanent magnets (SPM). Motor weight is approximately 10 kg, outer diameter is 200 mm and a maximum power is 50 kW at 4800 r/min. The article analyzes the selection of magnetic poles in the range from 2p = 12 to 2p = 24 and various slot-pole combinations for individual magnetic poles. The target function of the objective was achieved and the calculations results were verified on the physical model. The best solutions were 20-pole, 30-slots (highest efficiency and lowest rotor loss) and 24-pole, 27 slots (highest power density).


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3561
Author(s):  
Antti Uusitalo ◽  
Aki Grönman

The losses of supercritical CO2 radial turbines with design power scales of about 1 MW were investigated by using computational fluid dynamic simulations. The simulation results were compared with loss predictions from enthalpy loss correlations. The aim of the study was to investigate how the expansion losses are divided between the stator and rotor as well as to compare the loss predictions obtained with the different methods for turbine designs with varying specific speeds. It was observed that a reasonably good agreement between the 1D loss correlations and computational fluid dynamics results can be obtained by using a suitable set of loss correlations. The use of different passage loss models led to high deviations in the predicted rotor losses, especially with turbine designs having the highest or lowest specific speeds. The best agreement in respect to CFD results with the average deviation of less than 10% was found when using the CETI passage loss model. In addition, the other investigated passage loss models provided relatively good agreement for some of the analyzed turbine designs, but the deviations were higher when considering the full specific speed range that was investigated. The stator loss analysis revealed that despite some differences in the predicted losses between the methods, a similar trend in the development of the losses was observed as the turbine specific speed was changed.


Author(s):  
Ciro Attaianese ◽  
Mauro Di Monaco ◽  
Giuseppe Tomasso

AbstractA new field-oriented control strategy for induction motor is proposed in the paper. It is called Maximum Torque Per Watt (MTPW) and allows obtaining the minimum value of the sum of the stator and rotor losses due to joule effect, and of the iron losses, for a given value of the reference torque and of the motor speed. Iron losses have been modeled according to Steinmetz equation, separating hysteresis and eddy currents and taking into account the dependence both on the frequency and on the peak value of the flux density. Numerical and experimental results are presented to confirm the validity of the proposed approach, which allows achieving significant improvements in the efficiency of induction motor drive.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1514
Author(s):  
Hanwei Wang ◽  
Yue Chao ◽  
Tian Tang ◽  
Kai Luo ◽  
Kan Qin

The metal fueled steam Rankine cycle has been successfully applied to Unmanned Underwater Vehicles. However, the suitable turbine configuration is yet to be determined for this particular application. In this paper, the mean-line design approach based on the existing empirical correlations is first described. The corresponding partial admission axial and radial inflow turbines are then preliminarily designed. To assess the performance of designed turbines, the three-dimensional Computational Fluid Dynamics (CFD) simulations and steady-state structural analysis are performed. The results show that axial turbines are more compact than radial inflow turbines at the same output power. In addition, since radial inflow turbines can reduce the exit energy loss, this benefit substantially offsets the increment of the rotor losses created by the low speed ratios and supersonic rotor inlet velocity. On the contrary, due to the large volume of dead gas and strong transient effects caused by the high rotor blade length of radial inflow turbines, the overall performance between axial and radial inflow turbines is comparable (within 4%). However, the strength of radial inflow turbines is slightly superior because of lower blade inlet height and outlet hub radius. This paper confirms that the axial turbine is the optimal configuration for underwater vehicles in terms of size, aerodynamics and structural performance.


2021 ◽  
Author(s):  
Daniel Matt ◽  
Nadhem Boubaker

This chapter details the design of a new innovative solid bar winding for electrical machines (either motors or generators) dedicated to the electric propulsion. The goal of this new winding technique is to enhance the performance by better utilizing the stator slot and increasing the copper fill factor to higher than 75%, and also to reduce the inactive copper at the end-windings. Accordingly, many advantages arise from the application of this solid bar winding: higher torque-to-weight ratio, better thermal behavior, lower rotor losses, higher efficiency, higher reliability and lower cogging torque. However, the solid bar has its inherent constraints, which should be considered with care when designing an electric motor: the AC copper losses and the manufacturing process. The suggested winding technique aims at addressing these challenges.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 916
Author(s):  
Luca Cinti ◽  
Nicola Bianchi

This paper deals with the potentials of a Hybrid-Excitation Permanent-Magnet (HEPM) machine. The HEPM machine is characterized by a rotor including both permanent magnets (PMs) and excitation coils. The PMs produce a constant flux at the air gap of the machine, while an excitation current is supplied so as to regulate such a flux. A flux increase could be necessary during transient overload operations, while a flux decrease is useful during Flux-Weakening (FW) actions to operate at speeds higher than the nominal speed. Torque, power, efficiency, flux density and losses of an interior permanent magnet (IPM) motor and an HEPM motor are analyzed in detail. It is shown that this excitation winding produces a great advantage in terms of torque and power performance during the operations at speeds higher than the nominal speed. Despite the additional rotor losses, it is shown that there is a higher efficiency.


Author(s):  
Liang Xu ◽  
Wenxiang Zhao ◽  
Rende Li ◽  
Shuangxia Niu

2020 ◽  
Vol 6 (4) ◽  
pp. 86-96
Author(s):  
Junqiang Zheng ◽  
Wenxiang Zhao ◽  
Jinghua Ji ◽  
Jihong Zhu ◽  
Christopher H. T. Lee

Author(s):  
Antomne Caunes ◽  
Noureddine Takorabet ◽  
Sisuda Chaithongsuk ◽  
Laurent Duranton

Purpose The purpose of this paper is to present a synthesis of the analysis and modeling of the rotor losses in high speed permanent magnets motors. Design/methodology/approach Three types of losses are as a result of eddy currents in the conductive parts of the rotor. The analysis includes their characterization and the setup of a numerical model using finite element method. The adopted methodology is based on the separation of the losses which allows a better understanding of the physical phenomena. Each type of losses will be modeled and computed separately. Findings It is possible to make a precise estimate of the different losses in the rotor while keeping a relatively short computing time. Research limitations/implications The analysis is applied on a high-speed permanent magnet motor for avionic application. The model is validated with the commercial finite element model (FEM) software Flux2D. Originality/value The developed model allows an important save in terms of CPU-time compared to commercial FEM software while staying accurate. The separation of each losses and their sources is important for motor engineers and was requested for them to improve the designs more easily.


Sign in / Sign up

Export Citation Format

Share Document