Redesign of Structural Vibration Modes by Finite-Element Inverse Perturbation

1981 ◽  
Vol 103 (2) ◽  
pp. 319-325 ◽  
Author(s):  
K. A. Stetson ◽  
I. R. Harrison

A previously developed technique for redesigning the vibrational properties of structures, by inverting the first-order perturbation analysis of the equations of motion, has been applied to a NASTRAN finite element analysis for plates and shells. The program finds the minimal changes to the thicknesses of the plate elements necessary to effect a given set of changes in the modal frequencies and shapes. Results have been obtained for a flat cantilever plate, a cantilever segment of a cylinder, and for a compressor blade for a jet engine.

1980 ◽  
Author(s):  
K. A. Stetson ◽  
I. R. Harrison

A previously developed technique for redesigning the vibrational properties of structures, by inverting the first-order perturbation analysis of the equations of motion, has been applied to a NASTRAN finite element analysis for plates and shells. The program finds the minimal changes to the thicknesses of the plate elements necessary to effect a given set of changes in the modal frequencies and shapes. Results have been obtained for a flat cantilever plate, a cantilever segment of a cylinder, and for a compressor blade for a jet engine.


2014 ◽  
Vol 969 ◽  
pp. 97-100 ◽  
Author(s):  
Eva Kormaníková

The paper deals with numerical modeling of delamination of laminate plate consists of unidirectional fiber reinforced layers. The methodology adopts the first-order shear laminate plate theory and fracture and contact mechanics. There are described sublaminate modeling and delamination modeling by the help of finite element analysis. With the interface modeling there is calculated the energy release rate along the lamination front. Numerical results are given for mixed mode delamination problems by implementing the method in a 2D finite analysis, which utilizes shear deformable plate elements and interface elements. Numerical example is done by the commercial ANSYS code.


1989 ◽  
Vol 111 (4) ◽  
pp. 626-629
Author(s):  
W. Ying ◽  
R. L. Huston

In this paper the dynamic behavior of beam-like mechanism systems is investigated. The elastic beam is modeled by finite rigid segments connected by joint springs and dampers. The equations of motion are derived using Kane’s equations. The nonlinear terms are linearized by first order perturbation about a system balanced configuration state leading to geometric stiffness matrices. A simple numerical example of a rotating cantilever beam is presented.


2012 ◽  
Vol 160 ◽  
pp. 64-68
Author(s):  
Hui Fang Xue ◽  
You Wang

Based on the vibration problem of the plane gate in the inverted siphon exit of a large-scale hydraulic project in northern Xinjiang, the software ANSYS is used to build the entity model and finite element model. Considering the influence of fluid-solid coupling, the self-vibration characteristics of the gate in the water and without water are analyzed. The first six self-vibration frequencies and vibration modes of the gate are calculated. The results show that the height of water has a significant impact on the self-vibration frequencies of the plane gate. The first order natural frequency on the condition of small opening is decreased by 28.5%. It shows that the structure of the plane gate must be improved.


1996 ◽  
Vol 3 (4) ◽  
pp. 259-268 ◽  
Author(s):  
M.S. Yao

The large number of unknown variables in a finite element idealization for dynamic structural analysis is represented by a very small number of generalized variables, each associating with a generalized Ritz vector known as a basis vector. The large system of equations of motion is thereby reduced to a very small set by this transformation and computational cost of the analysis can be greatly reduced. In this article nonlinear equations of motion and their transformation are formulated in detail. A convenient way of selection of the generalized basis vector and its limitations are described. Some illustrative examples are given to demonstrate the speed and validity of the method. The method, within its limitations, may be applied to dynamic problems where the response is global in nature with finite amplitude.


2012 ◽  
Vol 157-158 ◽  
pp. 1000-1003
Author(s):  
Ke Wei Zhou ◽  
Cheol Kim ◽  
Min Ok Yun ◽  
Ju Young Kim

The improved equations of motion for a friction-engaged brake system have been newly derived on the basis of the assumed mode method and frictional damping. The equations of motion with a finite element model were constructed by a set of vibration modes found from FE modal analysis on all system components. Consequently, the modal information of system components are combined with equations of motion derived from the analytical model. Numerical analysis showed the mode which was unstable in an undamped case became stable in a damped case.


Sign in / Sign up

Export Citation Format

Share Document