Experimental Study of Oil-Water Flow in Inclined Pipes

1981 ◽  
Vol 103 (1) ◽  
pp. 56-66 ◽  
Author(s):  
H. Mukherjee ◽  
J. P. Brill ◽  
H. D. Beggs

Pressure loss and water holdup data were measured for oil-water flow in 1.5-in-dia inclined pipe with inclination angles from ± 30 deg to ± 90 deg from horizontal. Pressure losses were higher than calculated with available techniques, with maximum values near the phase inversion. Effects of input liquid fraction and inclination angle on friction pressure gradient are presented. Water holdup correlations for predicting in-situ liquid fractions are given.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182734-182757
Author(s):  
Weihang Kong ◽  
He Li ◽  
Guanglong Xing ◽  
Lingfu Kong ◽  
Lei Li ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 1-7
Author(s):  
A. Abubakar

The need to ensure qualitative and reliable measurement of pressure drop of the oil-water flow cannot be over emphasized. In this regard, this study focused on the investigation of uncertainty in the measurement of pressure drop of oil-water flow in different acrylic pipe inclinations (0, +5ᴼ, +10ᴼ and -5ᴼ) and diameters (30.6-, 55.7- and 74.7-mm ID). The working fluids were tap water and mineral-based hydraulic oil (Shell Tellus S2 V 15), with medium viscosity and density of 24 cP and 872 kgm-3 respectively while the interfacial tension between the water and the oil was 12.9 mN/m at 25 ᴼC. The selected flow conditions were 0.5 and 1.0 m/s mixture velocities each at 0.1, 0.5 and 0.9 input water volume fractions. The repeatability, accuracy of the pressure transmitter, flow rate of the oil-water mixture and holdup (particularly for the inclined flow) were the sources of errors in the measurement of the pressure drop. The results showed that the average relative uncertainties in the pressure drop in 30.6-mm ID pipe were ±4.6 %, ±10.8 %, ±11.2 % and ±10.8 % in the 0ᴼ, +5ᴼ, +10ᴼ and -5ᴼ inclined flows respectively. Similarly, the average relative uncertainties in the pressure drop in the horizontal 55.7-mm and 74.7-mm ID pipes were ±5.7 % and ±7.5 % respectively. The largest contribution to the uncertainty in the pressure drop came from the flow rate and water holdup in the horizontal and inclined pipes respectively. The least contribution in both  horizontal and inclined pipes came from the accuracy of the pressure transmitter. Key words: Oil-water flow; Pressure drops; Standard uncertainty, Combined standard uncertainty; Expanded uncertainty


Author(s):  
S. Alireza Hojati ◽  
Pedram Hanafizadeh

The flow patterns in two phase and multi-phase flows is a significant factor which influences many other parameters such as drag force, drag coefficient and pressure drop in pipe lines. One of the major streams in the gas and oil industries is oil-water two phase flow. The main flow patterns in oil-water flows are bubbly, slug, dual continuous, stratified and annular. In the present work flow patterns in two phase oil-water flow were investigated in a 0.5in diameter pipe with length of 2m. 3D simulation was used for this pipe and six types of mesh grid were used to investigate mesh independency of the simulation. The proposed numerical analyses were performed by a CFD package which is based both on volume of fluid (VOF) and Eulerian-Eulerian methods. The results showed that some flow patterns can be simulated better with VOF method and some other maybe in Eulerian-Eulerian method, so these two methods were compared with together for all flow patterns. The flow patterns may be a function of many parameters in flow. One of the important parameter which may affect flow patterns in pipe line is pipe inclination angle; therefore flow patterns in the different pipe inclination angles were investigated in two phase oil-water flow. The range of inclinations has been varied between −45 to +45 degree about the horizon. In the presented simulation oil is mixed with water via a circular hole at center of the pipe, the ratio of oil surface to water surface at entrance is 2/3 so water phase was considered as the main phase. Flow patterns were investigated for every angle of pipe and numerical results were compared with available experimental data for verification. Also the flow patterns simulated by numerical approaches were compared with available flow regime maps in the previous literatures. Finally, effect of pipe inclination angle and flow patterns on the pressure loss were investigated comprehensively.


2019 ◽  
Vol 196 ◽  
pp. 444-462
Author(s):  
Kshanthi Perera ◽  
Rune W. Time ◽  
Chaminda Pradeep ◽  
Amaranath S. Kumara

2006 ◽  
Vol 32 (3) ◽  
pp. 311-322 ◽  
Author(s):  
M. Descamps ◽  
R.V.A. Oliemans ◽  
G. Ooms ◽  
R.F. Mudde ◽  
R. Kusters

1998 ◽  
Vol 120 (1) ◽  
pp. 8-14 ◽  
Author(s):  
J. G. Flores ◽  
C. Sarica ◽  
T. X. Chen ◽  
J. P. Brill

Two-phase flow of oil and water is commonly observed in wellbores, and its behavior under a wide range of flow conditions and inclination angles constitutes a relevant unresolved issue for the petroleum industry. Among the most significant applications of oil-water flow in wellbores are production optimization, production string selection, production logging interpretation, down-hole metering, and artificial lift design and modeling. In this study, oil-water flow in vertical and inclined pipes has been investigated theoretically and experimentally. The data are acquired in a transparent test section (0.0508 m i.d., 15.3 m long) using a mineral oil and water (ρo/ρw = 0.85, μo/μw = 20.0 & σo−w = 33.5 dyne/cm at 32.22°C). The tests covered inclination angles of 90, 75, 60, and 45 deg from horizontal. The holdup and pressure drop behaviors are strongly affected by oil-water flow patterns and inclination angle. Oil-water flows have been grouped into two major categories based on the status of the continuous phase, including water-dominated and oil-dominated flow patterns. Water-dominated flow patterns generally showed significant slippage, but relatively low frictional pressure gradients. In contrast, oil-dominated flow patterns showed negligible slippage, but significantly large frictional pressure gradients. A new mechanistic model is proposed to predict the water holdup in vertical wellbores based on a drift-flux approach. The drift flux model was found to be adequate to calculate the holdup for high slippage flow patterns. New closure relationships for the two-phase friction factor for oil-dominated and water-dominated flow patterns are also proposed.


Sign in / Sign up

Export Citation Format

Share Document