Uncertainty Analysis for the Measurement of Oil-Water Flow Parameters, Part II: Pressure Drop

2020 ◽  
Vol 15 (1) ◽  
pp. 1-7
Author(s):  
A. Abubakar

The need to ensure qualitative and reliable measurement of pressure drop of the oil-water flow cannot be over emphasized. In this regard, this study focused on the investigation of uncertainty in the measurement of pressure drop of oil-water flow in different acrylic pipe inclinations (0, +5ᴼ, +10ᴼ and -5ᴼ) and diameters (30.6-, 55.7- and 74.7-mm ID). The working fluids were tap water and mineral-based hydraulic oil (Shell Tellus S2 V 15), with medium viscosity and density of 24 cP and 872 kgm-3 respectively while the interfacial tension between the water and the oil was 12.9 mN/m at 25 ᴼC. The selected flow conditions were 0.5 and 1.0 m/s mixture velocities each at 0.1, 0.5 and 0.9 input water volume fractions. The repeatability, accuracy of the pressure transmitter, flow rate of the oil-water mixture and holdup (particularly for the inclined flow) were the sources of errors in the measurement of the pressure drop. The results showed that the average relative uncertainties in the pressure drop in 30.6-mm ID pipe were ±4.6 %, ±10.8 %, ±11.2 % and ±10.8 % in the 0ᴼ, +5ᴼ, +10ᴼ and -5ᴼ inclined flows respectively. Similarly, the average relative uncertainties in the pressure drop in the horizontal 55.7-mm and 74.7-mm ID pipes were ±5.7 % and ±7.5 % respectively. The largest contribution to the uncertainty in the pressure drop came from the flow rate and water holdup in the horizontal and inclined pipes respectively. The least contribution in both  horizontal and inclined pipes came from the accuracy of the pressure transmitter. Key words: Oil-water flow; Pressure drops; Standard uncertainty, Combined standard uncertainty; Expanded uncertainty

2020 ◽  
Vol 12 (2) ◽  
pp. 173-180
Author(s):  
Anshumaan Dey ◽  
Monisha M. Mandal

The present numerical study is an effort to examine the hydrodynamics characteristics of two immiscible liquids (oil and water) flowing in different tubes. i.e., straight, coiled and Coiled Flow Inverter (CFI) tube of equal dimensions. CFI is a novel device in which fluid flow inversion takes place at uniform interval length of tube. The effect of oil-water viscosity ratio (µoil/µwater = 1.6 and 30) on velocity contours, phase distribution and pressure drop in the different tubes were investigated. The present work show that flow pattern of oil–water flows was changed from stratified to annular flows at higher water volume fraction for µoil/µwater = 1.6 in CFI. Phase inversion of oil–water flow was observed in CFI at higher viscosity ratio (µoil/µwater = 30). There was remarkable reduction in pressure drop with the increment in volume fraction of water flowing in coiled as well as CFI. CFI being more compact can be efficiently used in industries as chemical reactor, heat exchanger, mixer, etc.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


Author(s):  
Hooman Foroughi ◽  
Masahiro Kawaji

The flow characteristics of a highly viscous oil and water mixture in a circular microchannel have been investigated. Water and silicone oil with a viscosity of 863 mPa.s were injected into a fused silica microchannel with a diameter of 250 μm. Before each experiment, the microchannel was initially saturated with either oil or water. In the initially oil-saturated case, different liquid-liquid flow patterns were observed and classified over a wide range of oil and water flow rates. As a special case, the flow of water at zero oil flow rate in a microchannel initially filled with silicone oil was also studied. When the microchannel was initially saturated with water, the oil formed a jet in water at the injection point but developed an instability at the oil-water interface downstream and eventually broke up into droplets.


2020 ◽  
pp. 0958305X2094531
Author(s):  
Hebert Lugo-Granados ◽  
Lázaro Canizalez-Dávalos ◽  
Martín Picón-Núñez

The aim of this paper is to develop guidelines for the placing of new coolers in cooling systems subject to retrofit. The effects of the accumulation of scale on the flow system are considered. A methodology to assess the interconnected effect of local fluid velocity and fouling deposition is developed. The local average fluid velocity depends on the water flow rate distribution across the piping network. The methodology has four main calculation components: a) the determination of the flow rate distribution across the piping network, b) the prediction of fouling deposition, c) determination of the hydraulic changes and the effect on fouling brought about by the placing of new exchangers into an existing structure, and d) the calculation of the total cooling load and pressure drop of the system. The set of disturbances introduced to the system through fouling and the incorporation of new coolers, create network responses that eventually influence the cooling capacity and the pressure drop. In this work, these interactions are analysed using two case studies. The results indicate that, from the thermal point of view, the incorporation of new heat exchangers is recommended in series. The limit is the point where the increase of the total pressure drop causes a reduction in the overall volumetric flow rate. New coolers added in parallel create a reduction of pressure drop and an increase in the overall water flow rate; however, this increase is not enough to counteract the reduction of fluid velocity and heat capacity removal.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
D. S. Santos ◽  
P. M. Faia ◽  
F. A. P. Garcia ◽  
M. G. Rasteiro

The flow of oil/water mixtures in a pipe can occur under different flow patterns. Additionally, being able to predict adequately pressure drop in such systems is of relevant importance to adequately design the conveying system. In this work, an experimental and numerical study of the fully dispersed flow regime of an oil/water mixture (liquid paraffin and water) in a horizontal pipe, with concentrations of the oil of 0.01, 0.13, and 0.22 v/v were developed. Experimentally, the values of pressure drop, flow photographs, and radial volumetric concentrations of the oil in the vertical diameter of the pipe cross section were collected. In addition, normalized conductivity values were obtained, in this case, for a cross section of the pipe where an electrical impedance tomography (EIT) ring was installed. Numerical studies were carried out in the comsolmultiphysics platform, using the Euler–Euler approach, coupled with the k–ε turbulence model. In the simulations, two equations for the calculation of the drag coefficient, Schiller–Neumann and Haider–Levenspiel, and three equations for mixture viscosity, Guth and Simba (1936), Brinkman (1952), and Pal (2000), were studied. The simulated data were validated with the experimental results of the pressure drop, good results having been obtained. The best fit occurred for the simulations that used the Schiller–Neumann equation for the calculation of the drag coefficient and the Pal (2000) equation for the mixture viscosity.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 182734-182757
Author(s):  
Weihang Kong ◽  
He Li ◽  
Guanglong Xing ◽  
Lingfu Kong ◽  
Lei Li ◽  
...  

2018 ◽  
Vol 43 (11) ◽  
pp. 6355-6374
Author(s):  
Mujahid O. Elobeid ◽  
Aftab Ahmad ◽  
Abdelsalam Al-Sarkhi ◽  
Luai M. Alhems ◽  
Syed M. Shaahid ◽  
...  

Author(s):  
Bao Zhou ◽  
Pu-zhen Gao ◽  
Si-chao Tan ◽  
Jing-da Tian

An experimental investigation on fluctuating turbulent flow with different amplitudes, frequencies and mean values of flow rate in a narrow rectangular channel was carried out to determine the phase difference so as to find out real corresponding relationship between pressure drop and flow rate. It is found that the measurement delay time difference between the flow meter and the differential pressure transmitter is not a constant but vary with the different flow rate fluctuation conditions. The phase difference was calculated by a function which is given in this paper and tested by the result of two kinds of nonlinear fit methods, whose results agree well.


Sign in / Sign up

Export Citation Format

Share Document