Practical Modeling for Articulated Risers and Loading Columns

1984 ◽  
Vol 106 (4) ◽  
pp. 444-450 ◽  
Author(s):  
J. F. McNamara ◽  
M. Lane

An efficient method for the analysis of the linear and nonlinear static and dynamic motions of offshore systems such as risers and single-leg mooring towers is presented. The technique is based on the finite element approach using connected coordinates for arbitrary large rotations and includes terms due to loads such as buoyancy, gravity, random waves, currents, ship motions and Morison’s equation. Practical features include the addition of intermediate articulations and modeling of the loading arm between the riser and associated tanker. Parametric studies are presented to show that stable and accurate results are obtained using relatively large time step increments leading to efficient design studies.

Author(s):  
Z. Y. Song ◽  
C. Cheng ◽  
F. M. Xu ◽  
J. Kong

Based on the analytical solution of one-dimensional simplified equation of damping tidal wave and Heuristic stability analysis, the precision of numerical solution, computational time and the relationship between the numerical dissipation and the friction dissipation are discussed with different numerical schemes in this paper. The results show that (1) when Courant number is less than unity, the explicit solution of tidal wave propagation has higher precision and requires less computational time than the implicit one; (2) large time step is allowed in the implicit scheme in order to reduce the computational time, but the precision of the solution also reduce and the calculation precision should be guaranteed by reducing the friction factor: (3) the friction factor in the implicit solution is related to Courant number, presented as the determined friction factor is smaller than the natural value when Courant number is larger than unity, and their relationship formula is given from the theoretical analysis and the numerical experiments. These results have important application value for the numerical simulation of the tidal wave.


Author(s):  
Carl Trygve Stansberg ◽  
Trygve Kristiansen

Slowly varying motions and drift forces of a large moored ship in random waves at 35m water depth are investigated by an experimental wave basin study in scale 1:50. A simple horizontal mooring set-up is used. A second-order wave correction is applied to minimize “parasitic” long waves. The effect on the ship motion from the correction is clearly seen, although less in random wave spectra than in pure bi-chromatic waves. Empirical quadratic transfer functions (QTFs) of the surge drift force are found by use of cross-bi-spectral analysis, in two different spectra have been obtained. The QTF levels increase significantly with lower wave frequencies (except at the diagonal), which is special for finite and shallow water. Furthermore, the QTF levels frequencies at low frequencies increase significantly out from the QTF diagonal. Thus Newman’s approximation should preferrably not be used in these cases. Using the LF waves as a direct excitation in a “linear” ship force analysis gives random records that compare reasonably well with those from the cross-bi-spectral analysis. This confirms the idea that the drift forces in shallow water are closely correlated to the second-order potential, and thereby by the second-order LF waves.


2016 ◽  
Vol 54 (5) ◽  
pp. 2775-2798 ◽  
Author(s):  
Sofia Lindqvist ◽  
Peder Aursand ◽  
Tore Flåtten ◽  
Anders Aase Solberg

2016 ◽  
Vol 23 (3) ◽  
pp. 032501 ◽  
Author(s):  
R. Kleiber ◽  
R. Hatzky ◽  
A. Könies ◽  
A. Mishchenko ◽  
E. Sonnendrücker

Sign in / Sign up

Export Citation Format

Share Document