A Mixing-Length Model for the Prediction of Convex Curvature Effects on Turbulent Boundary Layers

1984 ◽  
Vol 106 (1) ◽  
pp. 142-148 ◽  
Author(s):  
E. W. Adams ◽  
J. P. Johnston

A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, δ/R > 0.05, the model scales mixing length on the wall radius of curvature, R. For small δ/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston [7]. Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. In this paper, six of these computations are presented and compared to experiment.

1989 ◽  
Vol 111 (1) ◽  
pp. 71-77 ◽  
Author(s):  
P. M. Ligrani ◽  
A. Ortiz ◽  
S. L. Joseph ◽  
D. L. Evans

Heat transfer effects of longitudinal vortices embedded within film-cooled turbulent boundary layers on a flat plate were examined for free-stream velocities of 10 m/s and 15 m/s. A single row of film-cooling holes was employed with blowing ratios ranging from 0.47 to 0.98. Moderate-strength vortices were used with circulating-to-free stream velocity ratios of −0.95 to −1.10 cm. Spatially resolved heat transfer measurements from a constant heat flux surface show that film coolant is greatly disturbed and that local Stanton numbers are altered significantly by embedded longitudinal vortices. Near the downwash side of the vortex, heat transfer is augmented, vortex effects dominate flow behavior, and the protection from film cooling is minimized. Near the upwash side of the vortex, coolant is pushed to the side of the vortex, locally increasing the protection provided by film cooling. In addition, local heat transfer distributions change significantly as the spanwise location of the vortex is changed relative to film-cooling hole locations.


2017 ◽  
Vol 39 (11) ◽  
pp. 923-932 ◽  
Author(s):  
Mostafa Safdari Shadloo ◽  
Abdellah Hadjadj ◽  
Fazle Hussain

Author(s):  
G. Wagner ◽  
M. Kotulla ◽  
P. Ott ◽  
B. Weigand ◽  
J. von Wolfersdorf

The transient liquid crystal technique is nowadays widely used for measuring the heat transfer characteristics in gas turbine applications. Usually, the assumption is made that the wall of the test model can be treated as a flat and semi-infinite solid. This assumption is correct as long as the penetration depth of the heat compared to the thickness of the wall and to the radius of curvature is small. However, those two assumptions are not always respected for measurements near the leading edge of a blade. This paper presents a rigorous treatment of the curvature and finite wall thickness effects. The unsteady heat transfer for a hollow cylinder has been investigated analytically and a data reduction method taking into account curvature and finite wall thickness effects has been developed. Experimental tests made on hollow cylinder models have been evaluated using the new reduction method as well as the traditional semi-infinite flat plate approach and a third method that approximately accounts for curvature effects. It has been found that curvature and finite thickness of the wall have in some cases a significant influence on the obtained heat transfer coefficient. The parameters influencing the accuracy of the semi-infinite flat plate model and the approximate curvature correction are determined and the domains of validity are represented.


1966 ◽  
Vol 33 (2) ◽  
pp. 429-437 ◽  
Author(s):  
J. C. Rotta

A review is given of the recent development in turbulent boundary layers. At first, for the case of incompressible flow, the variation of the shape of velocity profile with the pressure gradient is discussed; also the temperature distribution and heat transfer in incompressible boundary layers are treated. Finally, problems of the turbulent boundary layer in compressible flow are considered.


1992 ◽  
Vol 114 (4) ◽  
pp. 530-536 ◽  
Author(s):  
J. C. Klewicki ◽  
R. E. Falco ◽  
J. F. Foss

Time-resolved measurements of the spanwise vorticity component, ωz, are used to investigate the motions in the outer region of turbulent boundary layers. The measurements were taken in very thick zero pressure gradient boundary layers (Rθ = 1010, 2870, 4850) using a four wire probe. As a result of the large boundary layer thickness, at the outer region locations where the measurements were taken the wall-normal and spanwise dimensions of the probe ranged between 0.7 < Δy/η < 1.2 and 2.1 < Δz/η < 3.9, respectively, where η is the local Kolmogorov length. An analysis of vorticity based intermittency is presented near y/δ = 0.6 and 0.85 at each of the Reynolds numbers. The average intermittency is presented as a function of detector threshold level and position in the boundary layer. The spanwise vorticity signals were found to yield average intermittency values at least as large as previous intermittency studies using “surrogate” signals. The average intermittency results do not indicate a region of threshold independence. An analysis of ωz event durations conditioned on the signal amplitude was also performed. The results of this analysis indicate that for decreasing Rθ, regions of single-signed ωz increase in size relative to the boundary layer thickness, but decrease in size when normalized by inner variables.


Sign in / Sign up

Export Citation Format

Share Document