scholarly journals The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness

Author(s):  
G. Wagner ◽  
M. Kotulla ◽  
P. Ott ◽  
B. Weigand ◽  
J. von Wolfersdorf

The transient liquid crystal technique is nowadays widely used for measuring the heat transfer characteristics in gas turbine applications. Usually, the assumption is made that the wall of the test model can be treated as a flat and semi-infinite solid. This assumption is correct as long as the penetration depth of the heat compared to the thickness of the wall and to the radius of curvature is small. However, those two assumptions are not always respected for measurements near the leading edge of a blade. This paper presents a rigorous treatment of the curvature and finite wall thickness effects. The unsteady heat transfer for a hollow cylinder has been investigated analytically and a data reduction method taking into account curvature and finite wall thickness effects has been developed. Experimental tests made on hollow cylinder models have been evaluated using the new reduction method as well as the traditional semi-infinite flat plate approach and a third method that approximately accounts for curvature effects. It has been found that curvature and finite thickness of the wall have in some cases a significant influence on the obtained heat transfer coefficient. The parameters influencing the accuracy of the semi-infinite flat plate model and the approximate curvature correction are determined and the domains of validity are represented.

2005 ◽  
Vol 127 (1) ◽  
pp. 175-182 ◽  
Author(s):  
G. Wagner ◽  
M. Kotulla ◽  
P. Ott ◽  
B. Weigand ◽  
J. von Wolfersdorf

The transient liquid crystal technique is currently widely used for measuring the heat transfer characteristics in gas turbine applications. Usually, the assumption is made that the wall of the test model can be treated as a flat and semi-infinite solid. This assumption is correct as long as the penetration depth of the heat compared to the thickness of the wall and to the radius of curvature is small. However, those two assumptions are not always respected for measurements near the leading edge of a blade. This paper presents a rigorous treatment of the curvature and finite wall thickness effects. The unsteady heat transfer for a hollow cylinder has been investigated analytically and a data-reduction method, taking into account curvature and finite wall-thickness effects has been developed. Experimental tests made on hollow cylinder models have been evaluated using the new reduction method as well as the traditional semi-infinite flat-plate approach and a third method that approximately accounts for curvature effects. It has been found that curvature and finite thickness of the wall have, in some cases, a significant influence on the obtained heat transfer coefficient. The parameters influencing the accuracy of the semi-infinite flat-plate model and the approximate curvature correction are determined and the domains of validity are represented.


Author(s):  
U. Drost ◽  
A. Bölcs ◽  
A. Hoffs

The transient liquid crystal technique has been used to measure film cooling effectiveness and heat transfer on a flat plate in a free jet, and a turbine airfoil in a linear cascade. A multiple-test regression method has been developed for the data reduction, considering a transient coolant temperature evolution. Flat plate film cooling was investigated for a single row of 35° inclined holes at Mach numbers of 0.3 and 0.5, and two turbulence intensities. Downstream of injection heat transfer was increased in-between the holes due to enhanced turbulence caused by the shearing of the coolant and the mainstream. At higher turbulence intensity the range of blowing ratios was broader as lift-off was delayed. Rim cooling measurements on the airfoil were conducted at engine-representative flow conditions. A maximum effectiveness of 0.3 behind injection was observed on the suction side, with slightly higher values for a double row in comparison to a single row configuration. Due to a high coolant momentum, the effectiveness on the pressure side was very low at about 0.05 for a single row configuration.


1984 ◽  
Vol 106 (1) ◽  
pp. 142-148 ◽  
Author(s):  
E. W. Adams ◽  
J. P. Johnston

A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, δ/R > 0.05, the model scales mixing length on the wall radius of curvature, R. For small δ/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston [7]. Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. In this paper, six of these computations are presented and compared to experiment.


Author(s):  
Naoki Shikazono ◽  
Yasushi Suehisa ◽  
Nobuhide Kasagi ◽  
Hiroshi Iwata

A micro-grooved flat plate evaporator is modeled and its heat transfer characteristics are investigated numerically and experimentally. A test model is developed for the vapor compression cycle evaporator, where pressure gradient drives the vapor and the liquid flow. In this study, the effect of pressure gradient is implicitly introduced through the Smith’s equation for predicting void fraction from given quality. The film thickness profile in the micro region near the contact line is obtained by solving the 4th order differential equation. Then the local heat flux is obtained by assuming that the heat conduction through the liquid is one dimensional in the wall normal direction. The shape of liquid-vapor interface is assumed to be a circular arc in the macro region, whose radius is directly linked to the void fraction. This curvature radius is used as the boundary condition for the micro region model at the micro-macro interface. Finally, the heat transfer coefficient on a micro-grooved flat plate evaporator is measured in a HFC134a experimental loop and compared with the numerical prediction. The present model assumptions are validated and assessed.


Author(s):  
D. Charbonnier ◽  
P. Ott ◽  
M. Jonsson ◽  
Th. Ko¨bke ◽  
F. Cottier

Detailed surface measurements of the heat transfer coefficient and the film cooling effectiveness by application of the transient liquid crystal method were carried out on a heavily film cooled nozzle guide vane (NGV) in a linear cascade wind tunnel at the EPFL as part of the European Research Project TATEF2 (Turbine Aero-Thermal External Flows 2). The external cooling setup included a showerhead cooling scheme and suction and pressure side of the airfoil several rows of fan-shaped cooling holes. By testing two different cooling flow rates at a NGV exit Reynolds number of 1.46E+06, detailed aerodynamic and heat transfer measurement data were obtained that can be used for validation of numerical codes and design tools for cooled airfoils. The data include the NGV surface static pressure distribution and wall heat transfer and film cooling effectiveness obtained by application of the transient liquid crystal technique. An engine representative density ratio between the coolant and the external hot gas flow was achieved by using CO2 as coolant gas. For the coupled simulation of internal cooling and external flow the numerical model was composed of the cooling air feeding the internal plenum, the cooling holes, and the outer external flow domain. An unstructured mesh was generated for the simulations by applying two different commercial CFD codes (Fluent and CFX). Identical boundary conditions were chosen in order to allow for a direct comparison of both codes. The computations were carried in two ways, first using a built-in transition model and second by imposing fully turbulent flow starting at the leading edge. For both codes the same built-in turbulence models were applied. The computations were set up to solve for the aerodynamic flow quantities both within and around the test model and for the thermal quantities on the vane surface, i.e. heat transfer coefficient and film cooling effectiveness. The computational results from the two codes are compared and validated against the results from the experiments. The numerical results were able to confirm a suspicion that the cross flow in the feeding plenum causes an observed non-symmetry of the measured film cooling effectiveness at the outlet of some cooling holes.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Alexandros Terzis ◽  
Guillaume Wagner ◽  
Jens von Wolfersdorf ◽  
Peter Ott ◽  
Bernhard Weigand

This study examines experimentally the cooling performance of narrow impingement channels as could be cast-in in modern turbine airfoils. Full surface heat transfer coefficients are evaluated for the target plate and the sidewalls of the channels using the transient liquid crystal technique. Several narrow impingement channel geometries, consisting of a single row of five cooling holes, have been investigated composing a test matrix of nine different models. The experimental data are analyzed by means of various post-processing procedures aiming to clarify and quantify the effect of cooling hole offset position from the channel centerline on the local and average heat transfer coefficients and over a range of Reynolds numbers (11,100–86,000). The results indicated a noticeable effect of the jet pattern on the distribution of convection coefficients as well as similarities with conventional multi-jet impingement cooling systems.


Sign in / Sign up

Export Citation Format

Share Document