Flow Film Boiling From a Sphere to Subcooled Freon-11

1986 ◽  
Vol 108 (4) ◽  
pp. 934-938 ◽  
Author(s):  
J. A. Orozco ◽  
L. C. Witte

The boiling curves for flow boiling of freon-11 from a fluid-heated 3.81-cm-dia copper sphere showed dual maxima. One maximum corresponded to the nucleate peak heat flux while the other was caused by transitory behavior of the wake behind the sphere. Film boiling data were predicted well by the theory of Witte and Orozco. A semi-empirical correlation of the film boiling data accounting for both liquid velocity and subcooling predicted the heat transfer to within +/− 20 percent. The conditions at which the vapor film became unstable were also determined for various sub-coolings and velocities.

1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


1980 ◽  
Vol 102 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Salim Yilmaz ◽  
J. W. Westwater

Measurements were made of the heat transfer to Freon-113 at near atmospheric pressure, boiling outside a 6.5 mm dia horizontal steam-heated copper tube. Tests included pool boiling and also forced flow vertically upward at uelocities of 2.4, 4.0 and 6.8 m/s. The metal-to-liquid ΔT ranged from 13 to 125° C, resulting in nucleate, transition, and film boiling. The boiling curves for different velocities did not intersect or overlap, contrary to some prior investigators. The peak heat flux was proportional to the square root of velocity, agreeing with the Vliet-Leppert correlation, but disagreeing with the Lienhard-Eichhorn prediction of an exponent of 0.33. The forced-flow nucleate boiling data were well correlated by Rohsenow’s equation, except at high heat fluxes. Heat fluxes in film boiling were proportional to velocity to the exponent 0.56, close to the 0.50 value given by Bromley, LeRoy, and Robbers. Transition boiling was very sensitive to velocity; at a ΔT of 55° C the heat flux was 900 percent higher for a velocity of 2.4 m/s than for zero velocity.


Author(s):  
Umair Alam ◽  
Khalid Abd alrahman ◽  
Eckehard Specht

Spray quenching is widely used in industrial applications. In atomized spray quenching (ASQ), water and air are supplied to the nozzle at a certain flow rate and pressure to produce a full cone spray consisting of discrete droplets. Impingement density of spray i.e. coolant mass flow per unit area per second is considered to be the most influential parameter for heat transfer. Impingement density varies with radius and so as the heat flux. Water quality is altered by adding five different salts i.e. NaCl, Na2SO4, NaHCO3, Na2CO3, and MgSO4 in de-ionized water with various concentrations. On the other hand, a surfactant Ethoxylated ester, which is commonly added in cooling water in cast houses of metals, is added to pure water in different concentrations i.e 50, 100, 200 and 500ppm. A circular disc made of Nickel of thickness 2mm is heated to 600°C and sprayed on one side by atomized spray and the temperature distribution with respect to time is measured using Infrared camera on the other side of the disc. By this IR thermography, transient temperature measurement can be done within the window of 320×80 pixels with a minimum pixel real distance of 1mm on the sheet surface. Frequency of measurement is 150Hz. Since the temperature measurement and cooling sides are opposite at 2mm thickness apart, inverse heat conduction problem is solved by applying finite element method for calculating temperature and heat flux on the quenched side of metal sheet with respect to space and time. It has been observed that increasing the concentration of salts increase the leidenfrost point and shortens the film boiling regime. While addition of surfactants decrease the leidenfrost point and prolong the film boiling regime. Maximum heat flux position is considered as the wetting front position. There is an abrupt variation of heat flux at wetting front position due to the change of boiling phenomenon. Wetting front velocity has been compared for salt solutions, surfactant and de-ionized or pure water.


1981 ◽  
Vol 103 (3) ◽  
pp. 465-471 ◽  
Author(s):  
A. Inoue ◽  
A. Ganguli ◽  
S. G. Bankoff

Vapor explosions are believed to be triggered by the rapid collapse of film boiling of coolant in contact with molten fuel, probably due to local pressure waves from an initially small interaction. In Part I of this work the heat transfer during the first two ms after passage of a shock past a hot nickel tube surrounded by subcooled Freon-113 or ethanol was studied. The following important results were obtained: (1) The peak heat flux exhibits a maximum of a heater surface temperature of 280–350° C, depending upon the strength of the shock. This is well above the critical temperature, so that nucleation considerations are irrelevant. (2) The maximum of the peak heat flux envelope depends upon the shock ΔP, indicating that only partial contact is made upon collapse of the vapor film. (3) The collapse is rapid (1–2 frame at 5000 f/s), and is produced by relatively weak shocks (ΔP = 2–3 atm.). In the present work, the vapor film collapse is studied analytically, in order to obtain additional insight into the mechanism. A Lagrangian transformation due to Hamill and Bankoff is introduced to immobilize the moving boundary, and a polynomial temperature distribution in the transformed mass variable is assumed in the vapor region, as well as in the liquid region. This leads to a set of coupled nonlinear ordinary differential equations in the three regions, which are solved numerically. Two models were developed: (1) A detailed model, taking into account the Knudsen layers at the vapor-liquid and vapor-solid interfaces, and (2) a simplified model, in which these layers were neglected, and a linear temperature profile in the Lagrangian vapor phase variable was assumed. It is found that the initial vapor mass is a key variable determining whether collapse is achieved. In practice, this is a stochastic variable due to bubble departure, which explains the observed heat flux data scatter. The analytical results are in general agreement with the experimental data.


Author(s):  
Matthew Scheel ◽  
Keith Woloshun ◽  
Eric Olivas

Abstract The next-generation neutron spallation target station, the Target-Moderator-Reflector System (TMRS) Mk. IV, will be installed in 2021. This iteration features an unprecedented, water-cooled, third internal target aptly named the Upper Target. With the Upper Target designed completely by analysis, a complementary empirical investigation was undertaken to ascertain target conformance to those computational results which deemed the cooling efficacious. Three facets of the target were designated for verification: displacement under hydraulic load, critical fluid velocities, and the characteristic heat transfer coefficient. With the potential for flow maldistribution under excessive displacements, static pressure testing was performed. Discrepancies of an order of magnitude became evident between empirical and simulated displacements, 1.499 mm vs. 0.203 mm, respectively. A closed water flow loop reproducing the flow parameters intrinsic to the TMRS Mk. IV was constructed. Utilizing particle image velocimetry, global fluid dynamics were observed to be analogous to computer simulation. Furthermore, crucial velocities such as those at the point of beam impingement were met or exceeded, thus satisfying cooling requirements by preponderance. A graphite susceptor mirroring nominal beam geometry was coupled to a solenoid coil to replicate a prodigious peak heat flux of 169 W/cm2 via induction heating. Matching peak heat flux within 3% engendered a heat transfer coefficient 80% that of simulation. Consistent with analysis, the local heat transfer coefficient sufficiently mitigated nucleate/flow boiling. In summary, the analytically-derived Upper Target design empirically demonstrated sufficient cooling despite quixotic beam conditions and unforeseen displacements.


Author(s):  
Emilio Baglietto ◽  
Etienne Demarly ◽  
Ravikishore Kommajosyula

Advancement in the experimental techniques have brought new insights into the microscale boiling phenomena, and provide the base for a new physical interpretation of flow boiling heat transfer. A new modeling framework in Computational Fluid Dynamics has been assembled at MIT, and aims at introducing all necessary mechanisms, and explicitly tracks: (1) the size and dynamics of the bubbles on the surface; (2) the amount of microlayer and dry area under each bubble; (3) the amount of surface area influenced by sliding bubbles; (4) the quenching of the boiling surface following a bubble departure and (5) the statistical bubble interaction on the surface. The preliminary assessment of the new framework is used to further extend the portability of the model through an improved formulation of the force balance models for bubble departure and lift-off. Starting from this improved representation at the wall, the work concentrates on the bubble dynamics and dry spot quantification on the heated surface, which governs the Critical Heat Flux (CHF) limit. A new proposition is brought forward, where Critical Heat Flux is a natural limiting condition for the heat flux partitioning on the boiling surface. The first principle based CHF is qualitatively demonstrated, and has the potential to deliver a radically new simulation technique to support the design of advanced heat transfer systems.


Sign in / Sign up

Export Citation Format

Share Document