Nucleate Boiling and Critical Heat Flux From Protruded Chip Arrays During Flow Boiling

1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.

1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


Author(s):  
M. W. Alnaser ◽  
K. Spindler ◽  
H. Mu¨ller-Steinhagen

A test rig was constructed to investigate flow boiling in an electrically heated horizontal mini-channel array. The test section is made of copper and consists of twelve parallel mini-channels. The channels are 1 mm deep, 1 mm wide and 250 mm long. The test section is heated from underneath with six cartridge heaters. The channels are covered with a glass plate to allow visual observations of the flow patterns using a high-speed video-camera. The wall temperatures are measured at five positions along the channel axis with two resistance thermometers in a specified distance in heat flow direction. Local heat transfer coefficients are obtained by calculating the local heat flux. The working fluids are deionised water and ethanol. The experiments were performed under near atmospheric pressure (0.94 bar to 1.2 bar absolute). The inlet temperature was kept constant at 20°C. The measurements were taken for three mass fluxes (120; 150; 185 kg/m2s) at heat fluxes from 7 to 375 kW/m2. Heat transfer coefficients are presented for single phase forced convection, subcooled and saturated flow boiling conditions. The heat transfer coefficient increases slightly with rising heat flux for single phase flow. A strong increase is observed in subcooled flow boiling. At high heat flux the heat transfer coefficient decreases slightly with increasing heat flux. The application of ethanol instead of water leads to an increase of the surface temperature. At the same low heat flux flow boiling heat transfer occurs with ethanol, but in the experiments with water single phase heat transfer is still dominant. It is because of the lower specific heat capacity of ethanol compared to water. There is a slight influence of the mass flux in the investigated parameter range. The pictures of a high-speed video-camera are analysed for the two-phase flow-pattern identification.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 980
Author(s):  
Kairui Tang ◽  
Jingjing Bai ◽  
Siyu Chen ◽  
Shiwei Zhang ◽  
Jie Li ◽  
...  

With the rapid development of electronics, thermal management has become one of the most crucial issues. Intense research has focused on surface modifications used to enhance heat transfer. In this study, multilayer copper micromeshes (MCMs) are developed for commercial compact electronic cooling. Boiling heat transfer performance, including critical heat flux (CHF), heat transfer coefficients (HTCs), and the onset of nucleate boiling (ONB), are investigated. The effect of micromesh layers on the boiling performance is studied, and the bubbling characteristics are analyzed. In the study, MCM-5 shows the highest critical heat flux (CHF) of 207.5 W/cm2 and an HTC of 16.5 W(cm2·K) because of its abundant micropores serving as nucleate sites, and outstanding capillary wicking capability. In addition, MCMs are compared with other surface structures in the literature and perform with high competitiveness and potential in commercial applications for high-power cooling.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Satish G. Kandlikar ◽  
Theodore Widger ◽  
Ankit Kalani ◽  
Valentina Mejia

Flow boiling in microchannels has been extensively studied in the past decade. Instabilities, low critical heat flux (CHF) values, and low heat transfer coefficients have been identified as the major shortcomings preventing its implementation in practical high heat flux removal systems. A novel open microchannel design with uniform and tapered manifolds (OMM) is presented to provide stable and highly enhanced heat transfer performance. The effects of the gap height and flow rate on the heat transfer performance have been experimentally studied with water. The critical heat fluxes (CHFs) and heat transfer coefficients obtained with the OMM are significantly higher than the values reported by previous researchers for flow boiling with water in microchannels. A record heat flux of 506 W/cm2 with a wall superheat of 26.2 °C was obtained for a gap size of 0.127 mm. The CHF was not reached due to heater power limitation in the current design. A maximum effective heat transfer coefficient of 290,000 W/m2 °C was obtained at an intermediate heat flux of 319 W/cm2 with a gap of 0.254 mm at 225 mL/min. The flow boiling heat transfer was found to be insensitive to flow rates between 40–333 mL/min and gap sizes between 0.127–1.016 mm, indicating the dominance of nucleate boiling. The OMM geometry is promising to provide exceptional performance that is particularly attractive in meeting the challenges of high heat flux removal in electronics cooling applications.


Author(s):  
Chih-Jung Kuo ◽  
Yoav Peles

Flow boiling was experimentally studied in parallel microchannels using coolant HFE-7000. Subcooled nucleate boiling was achieved under various thermal-hydraulic conditions for mass velocities ranging from G = 164 kg/m2·s to G = 3025 kg/m2·s. Local surface temperatures were measured and flow visualizations were conducted to obtain flow morphologies, boiling curves, and heat transfer coefficients during boiling process. It was found that heat transfer was significantly enhanced during subcooled flow boiling by bubble agitation of the liquid.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2970
Author(s):  
Donghui Zhang ◽  
Haiyang Xu ◽  
Yi Chen ◽  
Leiqing Wang ◽  
Jian Qu ◽  
...  

Flow boiling in microporous layers has attracted a great deal of attention in the enhanced heat transfer field due to its high heat dissipation potential. In this study, flow boiling experiments were performed on both porous microchannels and a copper-based microchannel, using water as the coolant. As the heat flux was less than 80 W/cm2, the porous microchannels presented significantly higher boiling heat transfer coefficients than the copper-based microchannel. This was closely associated with the promotion of the nucleation site density of the porous coating. With the further increase in heat flux, the heat transfer coefficients of the porous microchannels were close to those of the copper-based sample. The boiling process in the porous microchannel was found to be dominated by the nucleate boiling mechanism from low to moderate heat flux (<80 W/cm2).This switched to the convection boiling mode at high heat flux. The porous samples were able to mitigate flow instability greatly. A visual observation revealed that porous microchannels could suppress the flow fluctuation due to the establishment of a stable nucleate boiling process. Porous microchannels showed no advantage over the copper-based sample in the critical heat flux. The optimal thickness-to-particle-size ratio (δ/d) for the porous microchannel was confirmed to be between 2–5. In this range, the maximum enhanced effect on boiling heat transfer could be achieved.


Author(s):  
Junping Gu ◽  
Guoli Tang ◽  
Yuxin Wu ◽  
Junfu Lyu ◽  
Hairui Yang ◽  
...  

Abstract Deep understanding of nucleate boiling heat transfer mechanism of saline solution is of great importance for the design and safe operation of steam generation equipment. In this paper, the nucleate flow boiling process of saline solution in a vertical heated pipe was experimentally studied within the concentration range of 0 % ∼ 6 %. In order to realize the visualization, the vertical heated pipe was made of transparent silica glass and a transparent ITO heater was used to provide energy for boiling. The high-speed high-resolution camera was used to capture the vapor-liquid two-phase flow structure. The bubble behaviors such as bubble departure diameter, bubble departure frequency, bubble growth time and waiting time were investigated under different operating conditions. The experimental results showed that the heat transfer deterioration did not occur within the solution concentration of 6% in this work. Under some low heat flux conditions, the heat transfer coefficients of solution can be higher than those of pure water. The reason for this phenomenon can be explained by the different bubble behaviors. Comparing to pure water, the bubble departure diameter of saline solution is bigger and bubble departure frequency is lower. The influences of operating parameters, including concentration, mass flux (200 kg/m2s ∼ 600 kg/m2s), heat flux (30 kW/m2 ∼ 180 kW/m2) and subcooling of fluid (5 K ∼ 35 K), on the nucleate boiling heat transfer coefficients and bubble parameters were comprehensively studied.


Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

An experimental study of two-phase heat transfer coefficients was carried out using R134a in uniformly heated horizontal circular microtubes with diameters of 0.50 mm and 1.60 mm. The effects of mass flux, heat flux, saturation pressure, and vapor quality on heat transfer coefficients were studied. The flow parameters investigated were as follows: exit pressures of 490, 670, 890, and 1160 kPa; mass fluxes of 300–1500 kg/m2s; heat fluxes of 0–350 kW/m2; inlet subcooling of 5, 20, and 40 °C; and exit qualities of 0 to 1.0. The parametric trends presented in the study are consistent with published literature. Heat transfer coefficients increased with increasing heat flux and saturation pressure while they were independent of variations in mass flux. Vapor quality had a negligible influence on heat transfer coefficients. For the conditions studied, the trends indicated that the dominant heat transfer mechanism was nucleate boiling. The experimental data was compared to three microchannel correlations — the Lazarek-Black, the Kandlikar, and the Tran Correlations. None of the correlations predicted the experimental data very well, although they all predicted the correct trend within limits of experimental error.


Author(s):  
C. Schneider ◽  
R. Hampel ◽  
A. Traichel ◽  
A. Hurtado ◽  
S. Meissner ◽  
...  

During full power operation of Pressurized Water Reactors (PWR), heat transfer phenomena of subcooled nucleate boiling may occur on the surface of the fuel rods. Despite high subcooling, this behavior results from the high heat flux up to 100 W/cm2 where vapor bubbles condensate when they are detached from the rod surface. In case of an accident with disturbance of cooling during transition from bubble to film boiling the critical heat flux (CHF) can be reached. This paper outlines the experimental investigation of heat transfer during subcooled flow boiling on a capillary tube. To investigate the heat transfer processes under these boiling conditions, a test facility for flow boiling with access for optical measuring methods was constructed. The temperature is measured with a thermocouple inside the tube while boiling bubbles are generated on the outside. For different subcooling and flow velocity the heat flux is increased in a range from zero up to approximately 115 W/cm2. The major aims of these investigations are to generate a database for modeling of these dependencies in computational fluid dynamic (CFD) codes and enhance the knowledge of phenomenological effects of subcooled flow boiling. This provides a contribution for the prediction of the critical heat flux with simulation codes.


Author(s):  
Hiroyasu Ohtake ◽  
Yasuo Koizumi ◽  
Norihumi Higono

Onset of nucleate boiling — ONB — and critical heat flux — CHF — on subcooled flow boiling under oscillatory flow and vibration conditions, focusing on liquid velocity, amplitude and frequency of oscillation and vibration were investigated experimentally. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2, 4 and 6 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. For the vibration condition, the test section was set on a vibration table. The acceleration was 1.3 and 4.2 m/s2, respectively; the frequency was 2, 4 and 20 Hz, respectively. The present experimental results showed that temperature at ONB and critical heat flux for oscillatory flow were lower than those for steady flow. The decreasing of liquid velocity by oscillatory caused the ONB and the CHF to decrease. Critical heat fluxes under the vibration conditions were higher than those for steady flow. The CHF under the vibration condition was increased with an increasing of acceleration of vibration. According to present observations, coalesced bubble on the heater was frequently released by vibration of the test heater. This behavior causes the CHF to become higher under the vibration condition. Furthermore, the effects of oscillation and vibration on velocity profile in a channel were estimated to discuss behaviors of a coalesced bubble on a heater.


Sign in / Sign up

Export Citation Format

Share Document