Thermal Effectiveness of Multiple Shell and Tube Pass TEMA E Heat Exchangers

1988 ◽  
Vol 110 (1) ◽  
pp. 54-59 ◽  
Author(s):  
A. Pignotti ◽  
P. I. Tamborenea

The thermal effectiveness of a TEMA E shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual symplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a function of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Qiu-Wang Wang ◽  
Gui-Dong Chen ◽  
Jing Xu ◽  
Yan-Peng Ji

Shell-and-tube heat exchangers (STHXs) have been widely used in many industrial processes. In the present paper, flow and heat transfer characteristics of the shell-and-tube heat exchanger with continuous helical baffles (CH-STHX) and segmental baffles (SG-STHX) were experimentally studied. In the experiments, these STHXs shared the same tube bundle, shell geometrical structures, different baffle arrangement, and number of heat exchange tubes. Experimental results suggested that the CH-STHX can increase the heat transfer rate by 7–12% than the SG-STHX for the same mass flow rate although its effective heat transfer area had 4% decrease. The heat transfer coefficient and pressure drop of the CH-STHX also had 43–53% and 64–72% increase than those of the SG-STHX, respectively. Based on second-law thermodynamic comparisons in which the quality of energy are evaluated by the entropy generation number and exergy losses, the CH-STHX decreased the entropy generation number and exergy losses by 30% and 68% on average than the SG-STHX for the same Reynolds number. The analysis from nondimensional correlations for Nusselt number and friction factor also revealed that if the maximal velocity ratio R>2.4, the heat transfer coefficient of CH-STHX was higher than that of SG-STHX, and the corresponding friction factor ratio kept at constant fo,CH/fo,SG=0.28.


2017 ◽  
Vol 9 (4) ◽  
pp. 451-461
Author(s):  
Artur Rubcov ◽  
Sabina Paulauskaitė ◽  
Violeta Misevičiūtė

The paper provides the results of experimental and theoretical test of a wavy fin and tube heat exchanger used to cool air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000<Re<4500 of the Reynolds number applying LMTD-LMED methodology, determined the dependency of the heat transfer coefficient on the supplied air flow rate with the varying geometry of the heat exchanger (the number of tube rows, the distance between fins, the thickness of the fin and the diameter of the tube). The experimental tests were performed on 9 heat exchangers in heating and 6 heat exchangers in cooling mode. After processing the results of the experimental tests, empirical equation defining the characteristics of the heat transfer coefficient of all heat exchangers were derived. The maximum heat transfer coefficient deviation is 11.6 percent. The correction factor of the wet fin (Lewis number) depending on the number of Reynolds, which ranges from 0.75 to 1.1 also is determined. Maximum capacity deviation equals 3.7 percent. The obtained equations can only be applied to a certain group of heat exchangers (with the same shape of fins or the distance between the tubes). The results of the experimental test and simulation with ANSYS program are compared and the heat transfer coefficients vary from 6.5 to 11.4 percent.


1989 ◽  
Vol 111 (2) ◽  
pp. 294-299 ◽  
Author(s):  
A. Pignotti

A simple relation is established between the thermal effectiveness of two heat exchanger configurations that differ from each other in the inversion of either one of the two fluids. Using this relation, if the expression for the effectiveness of a configuration, as a function of the heat capacity rate ratio, and the number of heat transfer units, is known, the corresponding expression for the “inverse” configuration is immediately obtained. The relation is valid under the assumptions of temperature independence of the heat transfer coefficient and heat capacity rates, when one of the fluids proceeds through the exchanger in a single, mixed stream. The property is illustrated with several examples from the available literature.


Author(s):  
Guidong Chen ◽  
Jing Xu ◽  
Ming Zen ◽  
Qiuwang Wang

In order to improve heat transfer performance of conventional segmental baffled shell-and-tube heat exchangers (STHXs), the shell-and-tube heat exchanger with combined helical baffles (CMH-STHX) were invented. In the present study, the CMH-STHX is compared with three other STHXs which were set up with continuous helical baffles (CH-STHX), discontinuous helical baffles (DCH-STHX) and segmental baffles (SG-STHX), by Computational Fluid Dynamics method. The numerical results show that, for the same mass flow rate at the shell side, the overall pressure drop of the CMH-STHX is about 50% and 40% lower than that of SG-STHX and CH-STHX. The heat transfer coefficient of the CMH-STHX is between those of CH-STHX and DCH-STHX and it is 6.3% lower than that of SG-STHX. The heat transfer coefficient under unit pressure drop h/Δp is introduced to evaluate the comprehensive performance of STHXs. The h/Δp of the CMH-STHX is 7.5%, 6.5% and 87.4% higher on average than those of the CH-SHTX, DCH-STHX and SG-STHX. Furthermore, the total heat transfer rate of CMH-STHX is about 25% higher than that of SG-STHX for the same total pressure drop of shell side. Supported by these results, the new heat exchanger (CMH-STHX) may be used to replace the conventional shell-and-tube heat exchanger in industrial applications.


Author(s):  
Jonathan Cox ◽  
Anoop Kanjirakat ◽  
Reza Sadr

Innovations in the field of nanotechnology have potential to improve industrial productivity and performance. One promising applications of this emerging technology is using nanofluids with enhanced thermal properties. Nanofluids, engineered colloidal suspensions consisting of nano-sized particles (less than 100nm) dispersed in a basefluid, have shown potential as industrial cooling fluids due to the enhanced heat transfer characteristics. Experiments are conducted to compare the overall heat transfer coefficient and pressure drop of water vs. nanofluids in a laboratory scale industrial type shell and tube heat exchanger. Three mass particle concentrations, 2%, 4% and 6%, of SiO2-water nanofluids are formulated by dispersing 20 nm diameter nano particles in desalinated water. Nanofluid and tap water are then circulated in the cold and hot loops, respectively, of the heat exchanger to avoid direct particle deposition on heater surfaces. Interestingly, experimental result show both augmentation and deterioration of heat transfer coefficient for nanofluids depending on the flow rate through the heat exchangers. This trend is consistent with an earlier reported observation for heat transfer in micro channels. This trend may be explained by the counter effect of the changes in thermo-physical properties of fluids together with the fouling on the heat exchanger surfaces. The measured pressure drop in the nanofluids flow shows an increase when compared to that of basefluid that could limit the use of nanofluids in heat exchangers for industrial application.


Author(s):  
Artur Rubcov ◽  
Sabina Paulauskaitė ◽  
Violeta Misevičiūtė

The paper provides the results of experimental tests of a wavy fin and tube heat exchanger used to heat (cool) air in a ventilation system when the wavy fin of the heat exchanger is dry and wet. The experimental tests, performed in the range of 1000<Re<4500 of the Reynolds number, determined the dependency of the heat transfer coefficient on the amount of supplied air with the varying geometry of the heat exchanger (the number of tube rows, the distance between fins, the thickness of the fin and the diameter of the tube). The experimental tests were performed on 9 heat exchangers in heating mode (dry fin) and 6 heat exchangers in cooling mode (wet fin). The ratio of heat transfer coefficient values when the fin is dry and wet varies from 0.79 to 1.12. After processing the results of the experimental tests, equations defining the dependency of the heat transfer coefficient on the amount of air and varying geometric parameters of the heat exchanger were derived, based on which 86% to 88% of the results do not exceed the 10% tolerance margin and the standard deviation varies from 3.5% to 4.3%.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4138 ◽  
Author(s):  
Yue Sun ◽  
Xinting Wang ◽  
Rui Long ◽  
Fang Yuan ◽  
Kun Yang

In this work, a shell and tube heat exchanger with inclined trefoil-hole baffles (STHX-IT) is proposed, and the numerical simulation is conducted to investigate the flow and heat transfer characteristics. A shell and tube heat exchanger with segmental baffles (STHX-SG) is also studied for the performance comparison. The results show that the heat transfer coefficient and pressure drop of the STHX-IT is averagely lower by 23.89% and 44.19% than those of the STHX-SG, but the heat transfer coefficient per pressure drop is higher by 36.38% on average. Further, the parametric studies of the inclination angle θ, trefoil-hole number n, and baffle cut δ are carried out for the STHX-IT. According to the numerical results, n and δ have more notable influence on shell side performance than θ. In detail, the heat transfer coefficient and pressure drop decrease slightly with θ increasing, and the overall performance is approximately equal; both the heat transfer coefficient and pressure drop decrease with the respective rising of n and δ, but the comprehensive performance shows a growing trend. Considering the synthetic effects of structural parameters, the multi-objective structure optimization using the genetic algorithm combined with the artificial neural networks is fulfilled. As a result, the Pareto front is obtained to characterize the behaviors of the maximum heat transfer rate and minimum pressure drop. The STHX-IT with the θ = 5.38°, n = 6, and δ = 43% is decided as the optimal solution by the TOPSIS method, whose Q/Δp is 2.34 times as much as that of the original STHX-SG.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Swanand Gaikwad ◽  
Ashish Parmar

AbstractHeat exchangers possess a significant role in energy transmission and energy generation in most industries. In this work, a three-dimensional simulation has been carried out of a shell and tube heat exchanger (STHX) consisting of segmental baffles. The investigation involves using the commercial code of ANSYS CFX, which incorporates the modeling, meshing, and usage of the Finite Element Method to yield numerical results. Much work is available in the literature regarding the effect of baffle cut and baffle spacing as two different entities, but some uncertainty pertains when we discuss the combination of these two parameters. This study aims to find an appropriate mix of baffle cut and baffle spacing for the efficient functioning of a shell and tube heat exchanger. Two parameters are tested: the baffle cuts at 30, 35, 40% of the shell-inside diameter, and the baffle spacing’s to fit 6,8,10 baffles within the heat exchanger. The numerical results showed the role of the studied parameters on the shell side heat transfer coefficient and the pressure drop in the shell and tube heat exchanger. The investigation shows an increase in the shell side heat transfer coefficient of 13.13% when going from 6 to 8 baffle configuration and a 23.10% acclivity for the change of six baffles to 10, for a specific baffle cut. Evidence also shows a rise in the pressure drop with an increase in the baffle spacing from the ranges of 44–46.79%, which can be controlled by managing the baffle cut provided.


2009 ◽  
Vol 62-64 ◽  
pp. 694-699 ◽  
Author(s):  
E. Akpabio ◽  
I.O. Oboh ◽  
E.O. Aluyor

Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. There are many modifications of the basic configuration which can be used to solve special problems. Baffles serve two functions: Most importantly, they support the tubes in the proper position during assembly and operation and prevent vibration of the tubes caused by flow-induced eddies, and secondly, they guide the shell-side flow back and forth across the tube field, increasing the velocity and the heat transfer coefficient. The objective of this paper is to find the baffle spacing at fixed baffle cut that will give us the optimal values for the overall heat transfer coefficient. To do this Microsoft Excel 2003 package was employed. The results obtained from previous studies showed that to obtain optimal values for the overall heat transfer coefficient for the shell and tube heat exchangers a baffle cut of 20 to 25 percent of the diameter is common and the maximum spacing depends on how much support the tubes need. This was used to validate the results obtained from this study.


Sign in / Sign up

Export Citation Format

Share Document