Comparative Performance of Rippled Fin Plate Fin and Tube Heat Exchangers

1989 ◽  
Vol 111 (1) ◽  
pp. 21-28 ◽  
Author(s):  
J. D. Maltson ◽  
D. Wilcock ◽  
C. J. Davenport

Continuous rippled fins are preferred to interrupted fins in applications where fouling by fibrous matter or insects is a problem. The performance characteristics of three rippled fin heat exchangers have been measured in a thermal wind tunnel. The results of these measurements are reported and comparisons are made with published data on similar surfaces. The performance evaluation criteria used as the basis for the comparisons were those recommended by Shah (1978). The tested rippled fin surfaces were found to have a higher performance than a similar surface reported in Kays and London (1984). The heat transfer enhancement was found to be dependent upon the profile of the fin.

2006 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Ventsislav Zimparov ◽  
Plamen Penchev ◽  
Joshua Meyer

Different techniques as angled spiraling tape inserts, a round tube in side a twisted square tube and spiraled tube in side the annulus have been used to enhance heat transfer in the annulus of tube-in-tube heat exchangers. The heat transfer enhancement in the shell can be supplemented by heat transfer augmentation in tubes using twisted tape inserts or micro-finned tubes. The effect of the thermal resistance of the condensing refrigerant could also be taken into consideration. To assess the benefit of using these techniques extended performance evaluation criteria have been implemented at different constraints. The decrease of the entropy generation can be combined with the relative in crease of the heat transfer rate or the relative reduction of the heat transfer area to find out the geometrical parameters of the tubes for optimal thermodynamics performance. The results show that in most of the cases considered, the angled spiraling tube insert technique is the most efficient.


1996 ◽  
Vol 118 (4) ◽  
pp. 897-902 ◽  
Author(s):  
M. J. Andrews ◽  
L. S. Fletcher

A comparative study about the performance of several enhanced heat transfer technologies for gas heat exchangers is presented. A Reynolds number range from 100 to 50,000 is considered for plate heat exchangers and the tube side of shell-and-tube heat exchangers. A volumetric performance measure has been adopted to evaluate the comparative performance of widely different technologies. The performance parameter, based on the heat transfer rate per unit pumping power, is suitable for different geometries, Reynolds numbers, and fluid properties. Modern technologies can achieve significant heat transfer enhancement, but comparison reveals that recent advances offer only marginal improvements that are often associated with more complex technology. Care must be exercised in choosing a technology because the best performing one is not necessarily the preferred choice since construction, retrofit, and maintenance costs may significantly alter the economic viability. However, there is an intrinsic interest in the comparative performance of very different technologies. Our performance evaluation indicates an upper limit may exist for single-mode convective heat transfer enhancement and compound enhancement may exceed this limit.


Author(s):  
Kalpana Gupta ◽  
Raj Kumar Singh ◽  
Naman Choudhary ◽  
Subham Mukhopadhyay

Abstract Varieties of heat transfer enhancement techniques developed by different researchers. Heat transfer augmentation techniques refer to different methods used to increase rate of heat transfer and basically divided into active, passive and compound heat transfer enhancement technique. Use of twisted tape is one such promising passive heat transfer augmentation technique. In this work a novel design of twisted tape is introduced. An attempt has been made to analyze the effect of newly designed twisted tape on heat transfer enhancement using computational Fluid Dynamics (CFD) Techniques. Physical time and energy considered for experimentation will be more so in present work simulation has been carried out using ANSYS FLUENT software to find performance of novel twisted tape. The tape considered here is corrugated twisted tape in which corrugations are given longitudinally with fixed angle of corrugation then it is twisted. Comparison in performance of tube without tape, with plain twisted tape and twisted corrugated tape has been done. Verification of model has been done using available correlations for plain tube and tube with plain twisted tape. Range of Reynolds varied from 10,000 to 60,000. Heat transfer and pressure drop characteristics studied using computational analysis. Nusselt Number and friction factor of round tube with CTT insert is found to be 1.79–1.94 times and 2.5–3.5 times higher respectively compared to round tube without any insert. Thermal performance factor chosen as performance evaluation criteria keeping pumping power constant. Performance of tube with corrugated twisted tape insert found to be better than plain tube (improvement in TPF up to 31%) taking into account both heat transfer and friction factor.


Author(s):  
Sujoy Kumar Saha ◽  
Hrishiraj Ranjan ◽  
Madhu Sruthi Emani ◽  
Anand Kumar Bharti

Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 25
Author(s):  
Iris Gerken ◽  
Thomas Wetzel ◽  
Jürgen J. Brandner

Micro heat exchangers have been revealed to be efficient devices for improved heat transfer due to short heat transfer distances and increased surface-to-volume ratios. Further augmentation of the heat transfer behaviour within microstructured devices can be achieved with heat transfer enhancement techniques, and more precisely for this study, with passive enhancement techniques. Pin fin geometries influence the flow path and, therefore, were chosen as the option for further improvement of the heat transfer performance. The augmentation of heat transfer with micro heat exchangers was performed with the consideration of an improved heat transfer behaviour, and with additional pressure losses due to the change of flow path (pin fin geometries). To capture the impact of the heat transfer, as well as the impact of additional pressure losses, an assessment method should be considered. The overall exergy loss method can be applied to micro heat exchangers, and serves as a simple assessment for characterization. Experimental investigations with micro heat exchanger structures were performed to evaluate the assessment method and its importance. The heat transfer enhancement was experimentally investigated with microstructured pin fin geometries to understand the impact on pressure loss behaviour with air.


2021 ◽  
Vol 11 (13) ◽  
pp. 5954
Author(s):  
Muhammad Ishaq ◽  
Amjad Ali ◽  
Muhammad Amjad ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal

Heat transfer enhancement in heat exchangers results in thermal efficiency and energy saving. In double-pipe heat exchangers (DPHEs), extended or augmented fins in the annulus of the two concentric pipes, i.e., at the outer surface of the inner pipe, are used to extend the surface of contact for enhancing heat transfer. In this article, an innovative diamond-shaped design of extended fins is proposed for DPHEs. This type of fin is considered for the first time in the design of DPHEs. The triangular-shaped and rectangular-shaped fin designs of DPHE, available in the literature, can be recovered as special cases of the proposed design. An h-adaptive finite element method is employed for the solution of the governing equations. The results are computed for various performance measures against the emerging parameters. The results dictate that the optimal configurations of the diamond-shaped fins in the DPHE for an enhanced heat transfer are recommended as follows: If around 4–6, 8–12, or 16–32 fins are to be placed in the DPHE, then the height of the fins should be 20%, 80%, or 100%, respectively, of the annulus width. If frictional loss of heat is also to be considered, then for fin-heights of 20–80% and 100% of the annulus width, the placement of 4 and 8 diamond-shaped fins, respectively, is recommended for an enhanced heat transfer. These recommendations are for the radii ratio (i.e., the ratio of the inner pipe radius to that of the outer pipe) of 0.25. The recommendations are be modified if the radii ratio is altered.


Sign in / Sign up

Export Citation Format

Share Document