Direct Contact Evaporation Between Two Immiscible Liquids in a Spray Column

1989 ◽  
Vol 111 (3) ◽  
pp. 780-785 ◽  
Author(s):  
K. N. Seetharamu ◽  
P. Battya

The present investigation deals with the direct contact evaporation of refrigerant 113 and n-pentane in a stagnant column of distilled water. The operational parameters investigated in the experimental study are the operating column height, the temperature difference, the dispersed phase flow rate, and the diameter and number of orifices in the distributor. The effects of these parameters on volumetric heat transfer coefficient, holdup, and agglomeration are investigated. A modified relation, based on the theoretical analysis of Smith et al. (1982), is also developed for predicting the theoretical volumetric heat transfer coefficient. Comparison with related works available in the literature shows reasonable agreement.

2001 ◽  
Author(s):  
S. I. Haider ◽  
Yogendra K. Joshi ◽  
Wataru Nakayama

Abstract The study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. Most available models deal with two-phase thermosyphons with counter-current circulation within a closed, vertical, wickless heat pipe. The present research focuses on CLTPTs for electronics cooling that face more complex two-phase flow patterns than the vertical heat pipes, due to closed loop geometry and smaller tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the chip temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hameed B. Mahood ◽  
Adel O. Sharif ◽  
Seyed Ali Hosseini ◽  
Rex B. Thorpe

An analytical model for the temperature distribution of a spray column, three-phase direct contact heat exchanger is developed. So far there were only numerical models available for this process; however to understand the dynamic behaviour of these systems, characteristic models are required. In this work, using cell model configuration and irrotational potential flow approximation characteristic models has been developed for the relative velocity and the drag coefficient of the evaporation swarm of drops in an immiscible liquid, using a convective heat transfer coefficient of those drops included the drop interaction effect, which derived by authors already. Moreover, one-dimensional energy equation was formulated involving the direct contact heat transfer coefficient, the holdup ratio, the drop radius, the relative velocity, and the physical phases properties. In addition, time-dependent drops sizes were taken into account as a function of vaporization ratio inside the drops, while a constant holdup ratio along the column was assumed. Furthermore, the model correlated well against experimental data.


2008 ◽  
Author(s):  
Tailian Chen

Prediction of condenser bundle performance is of great interest to chiller design engineers and tube developers as well. Depending on their locations in a condenser bundle, tubes are subjected to inundation or flooding of condensate coming from those above them. The tubes located in the top portion of the bundle are not or slightly inundated whereas the tubes located deep in the bundle experience larger degree of inundation; those in the bundle bottom are the most severely inundated. For a condenser bundle to have good performance, it is necessary for the tubes to perform well in both non-inundated and inundated conditions. In this paper, the outside condensation heat transfer coefficient and its sensitivity to inundation for a condenser tube of enhanced 3-dimensional (3D) outside fins were measured. Based on the single tube measurements, shell side condensation performance of a condenser bundle was predicted. The predicted bundle outside heat transfer coefficient has a reasonable agreement with that of a condenser tested in a 500-ton chiller.


1980 ◽  
Vol 102 (1) ◽  
pp. 32-37 ◽  
Author(s):  
N. Kaji ◽  
Y. H. Mori ◽  
Y. Tochitani ◽  
K. Komotori

The characteristics of the augmentation technique previously proposed by the authors has been studied experimentally with water drops 3.9 to 5.9 mm in diameter rising in methylphenyl silicone oil. Each drop is subjected to an intermittent electric field applied periodically perpendicular to its trajectory, and the drop responds by periodic elongation in the direction of the field. The dependence of heat transfer coefficient on the strength, frequency and duty ratio of the field is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document