The Strength and Ductility of Ice Under Tension

1988 ◽  
Vol 110 (2) ◽  
pp. 187-191 ◽  
Author(s):  
R. W. Lee ◽  
E. M. Schulson

Tensile experiments have been performed on aggregates of equiaxed and randomly oriented ice Ih of varying grain size (1.4 to 7.9 mm) at −10°C at two strain rates, 10−3 s−1 and 10−7 s−1. At both rates, which were held constant using “feed-back” control, the tensile strength decreased with increasing grain size. This result confirms earlier work on grain size effects in which the rate randomly varied (from 0.6 × 10−6 s−1 to 3 × 10−6 s−1) from test to test. At the higher rate the ice is brittle over the complete range of grain size and its strength is given by the relationship σf = σo + kd−1/2 where σo = 0.51 MPa and k = 0.03 MPa m1/2. At the lower rate the ice is ductile over the same range of grain size and its strength is given by the relationship σf = Kd−1/2 where K = 0.050 MPa m1/2. These effects are explained quantitatively in terms of the nucleation and propagation of cracks.

1986 ◽  
Vol 81 ◽  
Author(s):  
E.M. Schulson ◽  
I. Baker ◽  
H.J. Frost

Since writing on this subject two years ago [1], a number of developments have occurred, particularly in relation to the mechanical properties of the L12 nickel aluminide Ni3Al. Some elucidate the nature of the yield strength and the extraordinarily beneficial effect of boron on low-temperature ductility. Some others expose, at least in part, the nature of the marked reduction in ductility at elevated temperatures. Another considers the mechanisms dominating creep deformation. Also during this period, contradictions have appeared: the relationship between the yield strength and the grain size, d, at room temperature has been contested, and opposing views of grain refinement on ductility have been reported.This paper reviews these developments. Although broadly directed at intermetallic compounds, the discussion is specific to Ni3Al. The hope is that the knowledge and understanding gained about this compound will benefit the class as a whole.


Metal Science ◽  
1974 ◽  
Vol 8 (1) ◽  
pp. 325-331 ◽  
Author(s):  
J. P. Sah ◽  
G. J. Richardson ◽  
C. M. Sellars

Author(s):  
Yajun Yue ◽  
Xinzhao Xu ◽  
Man Zhang ◽  
Zhongna Yan ◽  
Vladimir Koval ◽  
...  

1980 ◽  
Vol 37 (6) ◽  
pp. 544-546 ◽  
Author(s):  
Amal K. Ghosh ◽  
Albert Rose ◽  
H. Paul Maruska ◽  
Daniel J. Eustace ◽  
Tom Feng

Sign in / Sign up

Export Citation Format

Share Document