The Strength and Ductility of Intermetallic Compounds: Grain Size Effects

1986 ◽  
Vol 81 ◽  
Author(s):  
E.M. Schulson ◽  
I. Baker ◽  
H.J. Frost

Since writing on this subject two years ago [1], a number of developments have occurred, particularly in relation to the mechanical properties of the L12 nickel aluminide Ni3Al. Some elucidate the nature of the yield strength and the extraordinarily beneficial effect of boron on low-temperature ductility. Some others expose, at least in part, the nature of the marked reduction in ductility at elevated temperatures. Another considers the mechanisms dominating creep deformation. Also during this period, contradictions have appeared: the relationship between the yield strength and the grain size, d, at room temperature has been contested, and opposing views of grain refinement on ductility have been reported.This paper reviews these developments. Although broadly directed at intermetallic compounds, the discussion is specific to Ni3Al. The hope is that the knowledge and understanding gained about this compound will benefit the class as a whole.

1988 ◽  
Vol 110 (2) ◽  
pp. 187-191 ◽  
Author(s):  
R. W. Lee ◽  
E. M. Schulson

Tensile experiments have been performed on aggregates of equiaxed and randomly oriented ice Ih of varying grain size (1.4 to 7.9 mm) at −10°C at two strain rates, 10−3 s−1 and 10−7 s−1. At both rates, which were held constant using “feed-back” control, the tensile strength decreased with increasing grain size. This result confirms earlier work on grain size effects in which the rate randomly varied (from 0.6 × 10−6 s−1 to 3 × 10−6 s−1) from test to test. At the higher rate the ice is brittle over the complete range of grain size and its strength is given by the relationship σf = σo + kd−1/2 where σo = 0.51 MPa and k = 0.03 MPa m1/2. At the lower rate the ice is ductile over the same range of grain size and its strength is given by the relationship σf = Kd−1/2 where K = 0.050 MPa m1/2. These effects are explained quantitatively in terms of the nucleation and propagation of cracks.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2002 ◽  
Vol 17 (1) ◽  
pp. 5-8 ◽  
Author(s):  
R. Z. Valiev ◽  
I. V. Alexandrov ◽  
Y. T. Zhu ◽  
T. C. Lowe

It is well known that plastic deformation induced by conventional forming methodssuch as rolling, drawing or extrusion can significantly increase the strength of metalsHowever, this increase is usually accompanied by a loss of ductility. For example, Fig.1 shows that with increasing plastic deformation, the yield strength of Cu and Almonotonically increases while their elongation to failure (ductility) decreases. Thesame trend is also true for other metals and alloys. Here we report an extraordinarycombination of high strength and high ductility produced in metals subject to severeplastic deformation (SPD). We believe that this unusual mechanical behavior is causedby the unique nanostructures generated by SPD processing. The combination ofultrafine grain size and high-density dislocations appears to enable deformation by newmechanisms. This work demonstrates the possibility of tailoring the microstructures ofmetals and alloys by SPD to obtain both high strength and high ductility. Materialswith such desirable mechanical properties are very attractive for advanced structuralapplications.


2014 ◽  
Vol 621 ◽  
pp. 158-164
Author(s):  
Hao Yan Wang ◽  
Zhe He Yao ◽  
De Qing Mei

Micro/meso forming, as an emerging manufacturing process for miniature metallic workpieces, has attracted great attention since the 1990s due to its high production efficiency, low material waste and high precision. Due to the so-called size effects in the scaling down, many traditional theories in metal forming cannot be simply applied to the micro/meso forming. In this study, the micro/meso upsetting experiments of Brass H62 were conducted at various temperatures. The stress−strain curves in the experiments were measured and compared. The effects of the temperature and the sample size on the flow stress were discussed. It is found that the flow stress of the material decreased with the decrease of the sample size at room temperature. However, the flow stress of the material may increase with the decrease of the sample size at elevated temperatures. The results indicate that the size effects in the micro/meso forming are significantly affected by the processing temperature.


2012 ◽  
Vol 581-582 ◽  
pp. 777-781
Author(s):  
Ya Qiang Tian ◽  
Ying Li Wei ◽  
Hong Liang Hou ◽  
Xue Ping Ren

The effect of hydrogenation on structure and properties of TC21 alloy by die forming and sintering using hydrogenated powder was researched by means of the room-temperature die forming and sintering in protection air to produce titanium alloy. The results show that the structure of TC21 titanium sintered body using hydrogenated powder with hydrogen content of 0.39 wt% by die forming and sintering is thinner and the density is higher than the others. The compression strength and compressive yield strength of TC21 sintered body with hydrogen content of 0.39 wt% are well. With hydrogen content increasing, the structure of TC21 production using hydrogenated powder by die forming and sintering gets well and the grain size becomes smaller. After annealing, the structure of TC21 titanium production gets more uniformity and refinement obviously, and the hydrogen content of TC21 alloy safety state is achieved. In the end, the density and mechanical property of TC21 titanium alloy sintered body with hydrogen content of 0.39wt % is the best.


2007 ◽  
Vol 539-543 ◽  
pp. 2725-2730 ◽  
Author(s):  
T. Mrotzek ◽  
Andreas Hoffmann ◽  
U. Martin ◽  
H. Oettel

The molybdenum alloy TZM (Mo-0.5wt%Ti-0.08wt%Zr) is a commonly used structural material for high temperature applications. For these purposes a high strength at elevated temperatures and also a sufficient ductility at room temperature are being aimed. Preceding investigations revealed the existence of subgrains in hot deformed TZM. It was observed that with proceeding primary recrystallization and therefore with disappearance of subgrains the yield strength drops almost to a level of pure molybdenum. It is being assumed that the existence of a dislocation substructure has a pronounced effect on the yield strength of TZM. The aim of the present study was to evaluate the subgrain and texture formation and also to estimate the dislocation arrangement within subgrains during hot deformation. Hence, TZM rods were rolled to different degrees of deformation at a temperature above 0.5 Tm. The microstructure of the initial material was fully recrystallized. Texture formation, misorientation distributions and subgrain sizes were analyzed by electron backscattering diffraction (EBSD). Mechanical properties were characterized by tensile tests at room temperature and up to 1200°C. It was revealed, that with increasing degree of deformation a distinct substructure forms and therefore yield strength rises. Consequently, the misorientation between adjacent subgrains increases, their size decreases and a <110> fibre texture develops. To estimate the influence of texture on strength of TZM the Taylor factors are calculated from EBSD data.


2014 ◽  
Vol 1004-1005 ◽  
pp. 158-162 ◽  
Author(s):  
Xiang Ting Hong ◽  
Fu Chen ◽  
Fei Chen ◽  
Wang Yu ◽  
Bo Rong Sang ◽  
...  

Microstructures of metal micro parts after microforming at elevated temperatures must be evaluated due to mechanical properties depend on average grain size. In this work, the effects of specimen diameter on the microstructure and microhardness of a hot-extruded AZ31B magnesium alloy were studied. Obvious size effect on microstructure and microhardness of the alloy could be observed. The size effects could be explained by strain distribution and dislocation density differences between the two kinds of specimens.


1960 ◽  
Vol 33 (2) ◽  
pp. 502-509 ◽  
Author(s):  
J. Mandel ◽  
F. L. Roth ◽  
M. N. Steel ◽  
R. D. Stiehler

Abstract Ultimate elongation (strain at failure) can be used to assess the aging of all rubber vulcanizates. For this purpose, it appears that Equation (2) can be used to express the early part of the aging process, corresponding to a period of aging at room temperature of 10 or more years. Prediction of shelf aging from tests at two or more elevated temperatures is only possible if the relationship between aging and temperature is known. For some rubber compounds the Arrhenius equation appears to hold. In these instances, it provides an effective means for estimating shelf aging.


1994 ◽  
Vol 364 ◽  
Author(s):  
Y. Yang ◽  
W. Yan ◽  
J. N. Liu ◽  
S. Hanada

AbstractForging processes at two different temperatures are performed to examine the relation between the microstructure and room temperature tensile properties in a Ce doped Fe3Al-based alloy. Results show that the microstructure and the ductility are sensitive to the forging temperature before annealing treatment. Higher yield strength and ductility can be obtained through forging at a relatively low temperature of 750°C followed by annealing at 800°C and 500°C. It is suggested that the formation of non-equilibrium grain boundaries and banded subgrains within carbide-free areas along grain boundaries enhances the local plastic deformation and results in the improvement of ductility. During the initial deformation at room temperature <111> slip is predominant for both microstructures.


2015 ◽  
Vol 736 ◽  
pp. 19-23
Author(s):  
Taek Kyun Jung ◽  
Hyo Soo Lee ◽  
Hyouk Chon Kwon

This study was carried out to investigate the effects of grain size on mechanical properties in Cu-Sn foil with a thickness of 30 um. The grain size was varied from approximately 7 um to 50 um using heat treatment at 773 K for 2 h to 24 h in a vacuum atmosphere. Tensile test was carried out at room temperature with strain rate of 1mm/min. Typical yield drop phenomenon was observed. Mechanical properties were found to be strongly affected by microstructural features including grain size. The yield strength and tensile strength gradually decreased with increasing the grain size. The strain to fracture also decreased by grain growth. These results could be explained by not only the grain size dependence of yield strength but also the ratio of thickness to grain size dependence of yield strength.


Sign in / Sign up

Export Citation Format

Share Document