Optimization of the Geometry of Shafts Using Boundary Elements

1984 ◽  
Vol 106 (2) ◽  
pp. 199-202 ◽  
Author(s):  
C. A. Mota Soares ◽  
H. C. Rodrigues ◽  
L. M. Oliveira Faria ◽  
E. J. Haug

The problem of the optimization of the geometry of shafts is formulated in terms of boundary elements. The corresponding nonlinear programming problem is solved by Pshenichny’s Linearization method. The advantages of the boundary element method over the finite element method for optimal design of shafts are discussed, with reference to the applications.

1987 ◽  
Vol 54 (1) ◽  
pp. 203-208 ◽  
Author(s):  
Bohou Xu ◽  
E. B. Hansen

The transient flow in the sector region bounded by two intersecting planes and a circular cylinder is determined in the Stokes approximation. The plane boundaries are assumed to be at rest while the cylinder is rotating with a constant velocity starting at t = 0. The problem is solved by means of three different methods, a finite element, a finite difference, and a boundary element method. The corresponding problem in which the constant velocity boundary condition on the cylinder is replaced by a condition of constant stress is also solved by means of the finite element method.


2008 ◽  
Vol 116 (1357) ◽  
pp. 941-949 ◽  
Author(s):  
Beatriz DEFEZ ◽  
Guillermo PERIS-FAJARNES ◽  
Ignacio TORTAJADA ◽  
Fernando BRUSOLA ◽  
Larisa DUNAI

Author(s):  
K H Kim ◽  
G H Han ◽  
H K Kim

Bellows can be used as collapse elements for automotive steering columns. The crash performance of the steering column can be significantly improved with the bellows. However, the bending flexibility of the bellows has negative effects on the vibration characteristics. An effort is made to improve the vibration characteristics of steering columns with bellows. To understand the effects of various design parameters on the collapse and vibration, sensitivity analyses are performed by the finite element method using Taguchi's scheme. It is shown that the structure of the upper mounting bracket is the most important parameter affecting the vibration characteristics. An optimal design is proposed for a lower tilt type steering column.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 245
Author(s):  
Sabin Sathyan ◽  
Ugur Aydin ◽  
Anouar Belahcen

This paper presents a numerical method and computational results for acoustic noise of electromagnetic origin generated by an induction motor. The computation of noise incorporates three levels of numerical calculation steps, combining both the finite element method and boundary element method. The role of magnetic forces in the production of acoustic noise is established in the paper by showing the magneto-mechanical and vibro-acoustic pathway of energy. The conversion of electrical energy into acoustic energy in an electrical motor through electromagnetic, mechanical, or acoustic platforms is illustrated through numerical computations of magnetic forces, mechanical deformation, and acoustic noise. The magnetic forces were computed through 2D electromagnetic finite element simulation, and the deformation of the stator due to these forces was calculated using 3D structural finite element simulation. Finally, boundary element-based computation was employed to calculate the sound pressure and sound power level in decibels. The use of the boundary element method instead of the finite element method in acoustic computation reduces the computational cost because, unlike finite element analysis, the boundary element approach does not require heavy meshing to model the air surrounding the motor.


Sign in / Sign up

Export Citation Format

Share Document