Status of Research on Environmentally Assisted Cracking in LWR Pressure Vessel Steels

1988 ◽  
Vol 110 (2) ◽  
pp. 113-128 ◽  
Author(s):  
F. P. Ford

This paper reviews collaborative work that has the objective of defining, from first principles, the environmentally assisted crack growth rates in the Type A533B or A508 low-alloy steel/water system at 288°C under static and cyclic loading conditions. These theoretical rates are then used to assess the validity of the current ASME XI life evaluation code. The investigations, which were conducted by members of the International Cyclic Crack Growth Rate Group, have centered around (a) defining a working hypothesis for environmentally assisted cracking, (b) determining the nature and magnitude of crack tip environments and reaction rates that are pertinent to the crack advance hypotheses, (c) quantitatively validating a hypothesis by comparing observed and theoretical values, and (d) using the qualified mechanism to evalute the validity of current life-evaluation codes for environmentally assisted crack propagation. It is concluded that, on the basis of the bulk of present data, the slip dissolution (film rupture) model seems to be quantitatively the most valid crack advance mechanism for this system at 288°C. However, under certain system conditions, it is possible that an additional advance component due to environmentally assisted cleavage may become significant. Regardless of these nuances, however, it is apparent that the current ASME XI code is probably conservative for extended cyclic loading conditions, and that a time-based (rather than a cyclic-base) code would give a more realistic assessment of the structural integrity for the expected range of load/time histories in pressure vessels.

1999 ◽  
Vol 578 ◽  
Author(s):  
H.H.M. Cleveringa ◽  
E. Van Der Giessen ◽  
A. Needleman

AbstractCyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a nonsingular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An elastic relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack initiation and crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions.


Author(s):  
I. Le May ◽  
R. Pascual

Flanges in pressure vessels are, in most cases, submitted to non-concentric loading conditions producing bending stresses in the bolts that have to be taken into account for design purposes. The VDI 2230 Guideline [5] provides an excellent tool for the design of bolted joints, especially those in which the bolts are eccentrically loaded, as is commonly the case in pressure vessels. When cyclic loading conditions that can lead to fatigue failure are prevalent, special attention should be paid to the fatigue criteria used in the design. This paper will analyze the general principles of the design of bolted joints, giving particular attention to the use of the VDI 2230 Guideline. The calculation of the stiffness of the joints using this guideline will be introduced and a comparison with the more commonly used approaches will be made. Finally an example of the calculations involved in the design of a bolted flange in a pressure vessel will be shown and a comparison of the different design and fatigue criteria made.


Sign in / Sign up

Export Citation Format

Share Document